首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Torsion of an elastic half-space by a rigid punch is investigated. The boundary of the half-space is assumed to be rough. Two geometries of the punch-parabolic and flat end are considered. It is shown that the contact area consists of stick and slip zones. This fact, which is well-known in the classical torsional contact of the elastic half-space with the smooth surface and the parabolic punch, also holds true for the flat-ended punch if the boundary roughness is involved. The partial slip problems are reduced to the integral equations, which are solved numerically. The presented results show the effects of boundary roughness on the shear stresses, size of the stick area and the relation between the twisting moment and the angle of twist.  相似文献   

2.
Summary The stationary problem of a rigid thermally insulated punch sliding over the boundary surface of a periodic two-layered thermoelastic half-space is considered. The heat generated in the contact area is assumed to be caused by frictional forces. The problem is formulated within the framework of thermoelasticity with microlocal parameters, and it is reduced to a system of two integral equations, which is solved numerically. The effects connected with the composite structure are analyzed.  相似文献   

3.
Numerical and analytical solutions of the 3D contact problem of elasticity on the penetration of a rigid punch into an orthotropic half-space are obtained disregarding the friction forces.A numericalmethod ofHammerstein-type nonlinear boundary integral equations was used in the case of unknown contact region, which permits determining the contact region and the pressure in this region. The exact solution of the contact problem for a punch shaped as an elliptic paraboloid was used to debug the program of the numerical method. The structure of the exact solution of the problem of indentation of an elliptic punch with polynomial base was determined. The computations were performed for various materials in the case of the penetration of an elliptic or conical punch.  相似文献   

4.
In this paper we consider the problem of adhesive frictionless contact of an elastic half-space by an axi-symmetric punch. We obtain integral equations that define the tractions and displacements normal to the surface of the half-space, as well as the size of the contact regions, for the cases of circular and annular contact regions. The novelty of our approach resides in the use of Betti’s reciprocity theorem to impose equilibrium, and of Abel transforms to either solve or substantially simplify the resulting integral equations. Additionally, the radii that define the annular or circular contact region are defined as local minimizers of the function obtained by evaluating the potential energy at the equilibrium solutions for each pair of radii. With this approach, we rather easily recover Sneddon’s formulas (Sneddon, Int. J. Eng. Sci., 3(1):47–57, 1965) for circular contact regions. For the annular contact region, we obtain a new integral equation that defines the inverse Abel transform of the surface normal displacement. We solve this equation numerically for two particular punches: a flat annular punch, and a concave punch.  相似文献   

5.
In this article, we study the axisymmetric tor-sional contact problem of a half-space coated with func-tionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thick-ness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral trans-form technique and reduce the problem to a singular integral equation, and then numerically determine the unknown con-tact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.  相似文献   

6.
The main interest of this study is a new method to solve the axisymmetric frictionless contact problem of functionally graded materials (FGMs). Based on the fact that an arbitrary curve can be approached by a series of continuous but piecewise linear curves, the FGM is divided into a series of sub-layers with shear modulus varying linearly in each sub-layer and continuous at the sub-interfaces. With this model, the axisymmetric frictionless contact problem of a functionally graded coated half-space is investigated. By using the transfer matrix method and Hankel integral transform technique, the problem is reduced to a Cauchy singular integral equation. The contact pressure, contact region and indentation are calculated for various indenters by solving the equations numerically. An erratum to this article can be found at  相似文献   

7.
The 3D contact problem on the action of a punch elliptic in horizontal projection on a transversally isotropic elastic half-space is considered for the case in which the isotropy planes are perpendicular to the boundary of the half-space. The elliptic contact region is assumed to be given (the punch has sharp edges). The integral equation of the contact problem is obtained. The elastic rigidity of the half-space boundary characterized by the normal displacement under the action of a given lumped force significantly depends on the chosen direction on this boundary. In this connection, the following two cases of location of the ellipse of contact are considered: it can be elongated along the first or the second axis of Cartesian coordinate system on the body boundary. Exact solutions are obtained for a punch with base shaped as an elliptic paraboloid, and these solutions are used to carry out the computations for various versions of the five elastic constants. The structure of the exact solution is found for a punch with polynomial base, and a method for determining the solution is proposed.  相似文献   

8.
The problem considered is that of a rigid flat-ended punch with rectangular contact area pressed into a linear elastic half-space to a uniform depth. Both the lubricated and adhesive cases are treated. The problem reduces to solving an integral equation (or equations) for the contact stresses. These stresses have a singular nature which is dealt with explicitly by a singularity-incorporating finite-element method. Values for the stiffness of the lubricated punch and the adhesive punch are determined: the effect of adhesion on the stiffness is found to be small, producing an increase of the order of 3%.  相似文献   

9.
The optimization problem for the contact interaction between a rigid punch and an elasticmediumis considered. It is assumed that that the punch is under the action of some prescribed forces and momenta and moves along a surface bounding a half-space filled with an elastic medium. It is also assumed that themotion is quasistatic and the friction forces arising in the region of contact are taken into account. The punch shape is considered as the desired design variable, and the integral functional characterizing the discrepancy between the pressure distribution in the region of contact that corresponds to the optimized shape of the punch and a given goal distribution of pressure is taken as the minimizing criterion. The optimal shape can be determined efficiently by solving the following two problems: first, to obtain the optimal pressure distribution and then to solve a boundary value problemfor the elastic half-space under the action of the obtained normal pressure and friction forces. By way of example, the optimal shape is analytically determined for a punch of rectangular shape in horizontal projection.  相似文献   

10.
A solution is given for the frictionless indentation of an elastic half-space by a flat-ended cylindrical punch with a central circular recess, when the load is large enough to establish a circular region of contact in the recess. The problem is reduced to two simultaneous Fredholm equations using the method of complex potentials due to Green and Collins. Results are presented for the relationship between load, contact radius and penetration for various punch geometries.  相似文献   

11.
We study a three-dimensional contact problem on the indentation of an elliptic punch into a face of a linearly elastic wedge. The wedge is characterized by two parameters of elasticity and its edge is subjected to the action of an additional concentrated force. The other face wedge is free from stresses. The problem is reduced to an integral equation for the contact pressure. An asymptotic solution of this equation is obtained which is effective for a given contact region fairly remote from the edge. Calculations are performed that allow one to evaluate the effect of a force applied outside the contact region on the contact pressure distribution. The problem under study is a generalization of L. A. Galin’s problem on a force applied outside a circular punch on an elastic half-space [1, 2]. In a special case of a wedge with an opening angle of 180° and zero contact ellipse eccentricity, the obtained asymptotic relation coincides with the expansion of Galin’s exact solution in a series. Problems of indentation of an elliptic punch into a spatial wedge with the face not loaded outside the contact region have been studied previously. For example, the paper [3] dealt with the case of a known contact region (asymptotic method) and the paper [4] considered the case of an unknown contact region (numerical method). The solution of Galin’s problem allowed the authors of [2] to reduce the contact problem on the interaction of several punches applied to a half-space to a system of Fredholm integral equations of the second kind (Andreikin-Panasyuk method). A topical direction in contact mechanics is the model of discrete contact as well as related problems on the interaction of several punches [2, 5–8]. The interaction of several punches applied to a face of a wedge can be treated in a similar manner and an asymptotic solution can be obtained for the case where a concentrated force is applied at an arbitrary point of this face beyond the contact region rather than on the edge.  相似文献   

12.
讨论了接触面为圆面的Hertz接触问题。若压力分布是轴对称的,则该接触问题的解必是唯一的。且在上述条件下,该接触问题的积分方程可化为两个推广的Abel积分方程组,此方程组的解便给出此接触问题的解。  相似文献   

13.
The paper is concerned with a contact problem about rigid rectangular punch forced into a half-space made of a linear elastic isotropic material with voids. We use a Cowin–Nunziato model for the half-space, and reduce the problem to a double Fredholm integral equation of the first kind. Then we apply two different approaches, to solve this equation. The first one is based on a direct collocation numerical technique. The second method is asymptotic, and we use a small parameter that is the relative width of the punch. Finally, compliance of the punch is determined, and results of the two different methods are compared with each other, as well as with a Sivashinsky–Panek–Kalker solution. Mathematics Subject Classifications (2000) 74M15.  相似文献   

14.
Closed form solution of quadruple integral equations involving inverse Mellin transforms has been obtained. The solution of quadruple integral equations is used in solving a two dimensional four-part mixed boundary value contact problem for an elastic wedge-shaped region as an application. Closed form expression for shear stress has been obtained. Finally, numerical results for shear stress are obtained and shown graphically.  相似文献   

15.
The axisymmetric contact problem for an elastic half-space and a rigid punch is considered using integral transform methods. The end of the punch is sectionally smooth and there is incomplete penetration. The normal stress under the punch is calculated and found to have an elliptic integral type of singularity.  相似文献   

16.
研究Winker地基模型上功能梯度材料涂层在一刚性圆柱形冲头作用下的摩擦接触问题。功能梯度材料涂层表面作用有法线向和切线向集中作用力。假设材料非均匀参数呈指数形式变化,泊松比为常量,利用Fourier积分变换技术将求解模型的接触问题转化为奇异积分方程组,再利用切比雪夫多项式对所得奇异积分方程组进行数值求解。最后,给出了功能梯度材料非均匀参数、摩擦系数、Winker地基模型刚度系数及冲头曲率半径对接触应力分布和接触区宽度的影响情况。  相似文献   

17.
Self-similar problems of contact for non-convex punches are considered. The non-convexity of the punch shapes introduces differences from the traditional self-similar contact problems when punch profiles are convex and their shapes are described by homogeneous functions. First, three-dimensional Hertz type contact problems are considered for non-convex punches whose shapes are described by parametric-homogeneous functions. Examples of such functions are numerous including both fractal Weierstrass type functions and smooth log-periodic sine functions. It is shown that the region of contact in the problems is discrete and the solutions obey a non-classical self-similar law. Then the solution to a particular case of the contact problem for an isotropic linear elastic half-space when the surface roughness is described by a log-periodic function, is studied numerically, i.e. the contact problem for rough punches is studied as a Hertz type contact problem without employing additional assumptions of the multi-asperity approach. To obtain the solution, the method of non-linear boundary integral equations is developed. The problem is solved only on the fundamental domain for the parameter of self-similarity because solutions for other values of the parameter can be obtained by renormalization of this solution. It is shown that the problem has some features of chaotic systems, namely the global character of the solution is independent of fine distinctions between parametric-homogeneous functions describing roughness, while the stress field of the problem is sensitive to small perturbations of the punch shape.  相似文献   

18.
功能梯度材料涂层半空间的轴对称光滑接触问题   总被引:2,自引:0,他引:2  
求解了功能梯度材料涂层半空间的轴对称光滑接触问题,其中梯度层剪切模量按照线性变化,利用Hankel积分变换方法求解微分方程,将问题化为具有Cauchy型奇异核的积分方程.数值方法求解表明:功能梯度材料涂层半空间在刚性柱形压头和球形压头作用下,接触表面分布应力,接触半径以及最大压痕受材料梯度效应的影响较大.  相似文献   

19.
A mathematical formulation is given and a solution is found to the quasistatic contact problem of thermoelasticity for a rigid heat-conducting punch moving over an elastic layer with fixed base. The interaction is accompanied by heating due to frictional forces obeying Amonton’s law. The problem is reduced to a system of integral equations with time-varying limits of integration. The structure of these equations depends on the type of thermal and physical conditions on the contact surface. An algorithm is proposed for the numerical solution of this kind of equations. The variation in the contact pressure and contact area with time is studied __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 35–46, December 2005.  相似文献   

20.
建立并研究一类接触型界面裂纹模型对瞬态弹性波作用下的动态响应问题。文中利用积分变换和积分方程法推导了确定这类问题的奇异积分方程组。采用围道积分技术和切比雪夫多项式展开技术,得到了待定系数的非线性代数方程组。最后给出了裂纹尖端接触区大小和接触应力随时间变化的数值结果,揭示了这种接触裂纹的动力学特性及物理上的合理性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号