首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Masood Khan  Azeem Shahzad 《Meccanica》2013,48(10):2391-2400
The steady two-dimensional stagnation-point flow, represented by Sisko fluid constitutive model, over a stretching sheet is investigated theoretically. Using suitable similarity transformations, the governing boundary-layer equations are transformed into the self-similar non-linear ordinary differential equation. The transformed equation is then solved using a very efficient analytic technique namely the homotopy analysis method (HAM) and the HAM solutions are validated by the exact analytic solutions obtain in certain special cases. The influence of the power-law index (n), the material parameter (A) and the velocity ratio parameter (d/c) on the flow characteristics is studied and presented through several graphs. In addition, the local skin friction coefficient for several values of these parameters is tabulated and examined. The similarity solutions for both the Newtonian and the power-law fluids are presented as special cases of the analysis. The results obtained reveal that, in comparison with the Newtonian and the power-law fluids, the velocity profiles of the Sisko fluid are much faster (slower), for d/c<1 (d/c>1), respectively.  相似文献   

2.
This paper presents the analytic solution for flow of a magnetohydrodynamic (MHD) Sisko fluid through a porous medium. The non-linear flow problem in a porous medium is formulated by introducing the modified Darcy’s law for Sisko fluid to discuss the flow in a porous medium. The analytic solutions are obtained using homotopy analysis method (HAM). The obtained analytic solutions are explicitly expressed by the recurrence relations and can give results for all the appropriate values of material parameters of the examined fluid. Moreover, the well-known solutions for a Newtonian fluid in non-porous and porous medium are the limiting cases of our solutions.  相似文献   

3.
This study presents an analysis of the axisymmetric flow of a non-Newtonian fluid over a radially stretching sheet. The momentum equations for two-dimensional flow are first modeled for Sisko fluid constitutive model, which is a combination of power-law and Newtonian fluids. The general momentum equations are then simplified by invoking the boundary layer analysis. Then a non-linear ordinary differential equation governing the axisymmetric boundary layer flow of Sisko fluid over a radially stretching sheet is obtained by introducing new suitable similarity transformations. The resulting non-linear ordinary differential equation is solved analytically via the homotopy analysis method (HAM). Closed form exact solution is then also obtained for the cases n=0 and 1. Analytical results are presented for the velocity profiles for some values of governing parameters such as power-law index, material parameter and stretching parameter. In addition, the local skin friction coefficient for several sets of the values of physical parameter is tabulated and analyzed. It is shown that the results presented in this study for the axisymmetric flow over a radially non-linear stretching sheet of Sisko fluid are quite general so that the corresponding results for the Newtonian fluid and the power-law fluid can be obtained as two limiting cases.  相似文献   

4.
The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and thermal equations of the flow are reduced to a nonlinear system of ordinary differential equations. The equations are solved analyt- ically using the homotopy analysis method (HAM). Convergence of the HAM solutions is discussed in detail. These solutions are then compared with recently obtained numericM and perturbative solutions. Plots of the velocity and temperature profiles are provided for various values of the relevant parameters.  相似文献   

5.
This paper presents a numerical study for the unsteady flow of a magnetohydrodynamic (MHD) Sisko fluid in annular pipe. The fluid is assumed to be electrically conducting in the presence of a uniform magnetic field. Based on the constitutive relationship of a Sisko fluid, the non‐linear equation governing the flow is first modelled and then numerically solved. The effects of the various parameters especially the power index n, the material parameter of the non‐Newtonian fluid b and the magnetic parameter B on the flow characteristics are explored numerically and presented through several graphs. Moreover, the shear‐thinning and shear‐thickening characteristics of the non‐Newtonian Sisko fluid are investigated and a comparison is also made with the Newtonian fluid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We have analyzed an incompressible Sisko fluid through an axisymmetric uniform tube with a sinusoidal wave propagating down its walls. The present analysis of non- Newtonian fluid is investigated under the considerations of long wavelength and low Reynolds number approximation. The analytic solution is obtained using (i) the regular perturbation method (ii) the Homotopy analysis method (HAM). The comparison of both the solutions is presented graphically. The results for the pressure rise, frictional force and pressure gradient have been calculated numerically and the results are studied for various values of the physical parameters of interest, such as α (angle of inclination), b^* (Sisko fluid parameter), Ф (amplitude ratio) and n (power law index). Trapping phenomena is discussed at the end of the article.  相似文献   

7.
This letter is concerned with the plane and axisymmetric stagnation-point flows and heat transfer of an electrically-conducting fluid past a stretching sheet in the presence of the thermal radiation and heat generation or absorption. The analytical solutions for the velocity distribution and dimensionless temperature profiles are obtained for the various values of the ratio of free stream velocity and stretching velocity, heat source parameter, Prandtl number, thermal radiation parameter, the suction and injection velocity parameter and magnetic parameter and dimensionality index in the series form with the help of homotopy analysis method (HAM). Convergence of the series is explicitly discussed. In addition, shear stress and heat flux at the surface are calculated.  相似文献   

8.
The present paper is concerned with the steady thin film flow of the Sisko fluid on a horizontal moving plate, where the surface tension gradient is a driving mechanism. The analytic solution for the resulting nonlinear ordinary differential equation is obtained by the Adomian decomposition method (ADM). The physical quantities are derived including the pressure profile, the velocity profile, the maximum residue time, the stationary points, the volume flow rate, the average film velocity, the uniform film thickness, the shear stress, the surface tension profile, and the vorticity vector. It is found that the velocity of the Sisko fluid film decreases when the fluid behavior index and the Sisko fluid parameter increase, whereas it increases with an increase in the inverse capillary number. An increase in the inverse capillary number results in an increase in the surface tension which in turn results in an increase in the surface tension gradient on the Sisko fluid film. The locations of the stationary points are shifted towards the moving plate with the increase in the inverse capillary number, and vice versa locations for the stationary points are found with the increasing Sisko fluid parameter. Furthermore, shear thinning and shear thickening characteristics of the Sisko fluid are discussed. A comparison is made between the Sisko fluid film and the Newtonian fluid film.  相似文献   

9.
Hamed Shahmohamadi 《Meccanica》2012,47(6):1313-1323
The similarity transform for the steady free convection boundary layer flow of a non-Newtonian fluid (Casson model) with variable wall temperature on a horizontal plate gives a system of nonlinear ordinary differential equations which is solved analytically by applying a newly developed method namely the homotopy analysis method (HAM). The velocity and temperature profiles are obtained and the influence of Prandtl number and various physical parameters of the problem on these distributions are discussed in detail and are illustrated graphically through a set of graphs. The validity of our solutions is verified by the numerical results.  相似文献   

10.
The gravity-forced motion of an ideal incompressible fluid of infinite depth is studied when a periodic pressure is applied to the surface of the fluid. This problem is solved on the basis of the small amplitude wave theory. The analytical solutions for the velocity potential, the velocity field, and the shape of the free surface are found. An expression for the horizontal force is obtained in the case of a traveling wave.  相似文献   

11.
In this paper steady flow of a third grade fluid through porous space is considered. Modified Darcy’s law for third grade fluid in a porous space has been introduced. The governing non-linear equation is first modelled and then solved using homotopy analysis method (HAM). The convergence of the obtained series solution is discussed. The effects of the emerging parameters on the velocity field are seen. It is noted that meaningful solution exists only in the case of suction.  相似文献   

12.
In this article, we present accurate analytical solutions for boundary layer flow and heat transfer of an incompressible and electrically conducting viscoelastic fluid over a linearly stretching surface subject to a transverse uniform magnetic field using the homotopy analysis method (HAM) for two general types of non-isothermal boundary conditions. In addition, we demonstrate that the previously reported analytical solutions for the temperature field given in terms of Kummer's function do not converge at the boundary. We provide a graphical and numerical demonstration of the convergence of the HAM solutions and tabulate the effects of various parameters on the skin friction coefficient and wall heat transfer.  相似文献   

13.
An exact and a numerical solutions to the problem of a steady mixed convective MHD flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate with combined heat and mass transfer are presented.A uniform magnetic field is assumed to be applied transversely to the direction of the flow with the consideration of the induced magnetic field with viscous and magnetic dissipations of energy.The porous plate is subjected to a constant suction velocity as well as a uniform mixed stream velocity.The governing equations are solved by the perturbation technique and a numerical method.The analytical expressions for the velocity field,the temperature field,the induced magnetic field,the skin-friction,and the rate of heat transfer at the plate are obtained.The numerical results are demonstrated graphically for various values of the parameters involved in the problem.The effects of the Hartmann number,the chemical reaction parameter,the magnetic Prandtl number,and the other parameters involved in the velocity field,the temperature field,the concentration field,and the induced magnetic field from the plate to the fluid are discussed.An increase in the heat source/sink or the Eckert number is found to strongly enhance the fluid velocity values.The induced magnetic field along the x-direction increases with the increase in the Hartmann number,the magnetic Prandtl number,the heat source/sink,and the viscous dissipation.It is found that the flow velocity,the fluid temperature,and the induced magnetic field decrease with the increase in the destructive chemical reaction.Applications of the study arise in the thermal plasma reactor modelling,the electromagnetic induction,the magnetohydrodynamic transport phenomena in chromatographic systems,and the magnetic field control of materials processing.  相似文献   

14.
研究持续拉伸变形表面上二维平面和轴对称驻点流的动量和热量传输问题。利用同伦分析方法获得速度分布和温度分布的级数解,讨论了级数的敛散性。通过图形分析主流速度与拉伸速度的比率参数,普朗特参数,热源参数和流动类型指标对速度边界层和温度边界层的影响。结果表明,这些参数对二维平面驻点流动和传热有较大的影响。  相似文献   

15.
The fluid flow problem within the wall jet created by fluid hitting on a solid surface at the right angle is solved based on the homotopy analysis method (HAM). A new family of solutions for jet with injection/suction which has been overlooked so far are obtained. Numerical evidence seems to suggest that these solutions decay algebraically far away from the wall.  相似文献   

16.
The unsteady MHD boundary layer flow of a micropolar fluid near the forward stagnation point of a two dimensional plane surface is investigated by using similarity transformations. The transformed nonlinear differential equations are solved by an analytic method, namely homotopy analysis method (HAM). The solution is valid for all values of time. The effect of MHD and porous medium, non dimensional velocity and the microrotation are presented graphically and discussed. The coefficient of skin friction is also presented graphically.  相似文献   

17.
Roy  S.  Takhar  H.S.  Nath  G. 《Meccanica》2004,39(3):271-283
Unsteady flow over an infinite permeable rotating cone in a rotating fluid in the presence of an applied magnetic field has been investigated. The unsteadiness is induced by the time-dependent angular velocity of the body, as well as that of the fluid. The partial differential equations governing the flow have been solved numerically by using an implicit finite-difference scheme in combination with the quasi-linearization technique. For large values of the magnetic parameter, analytical solutions have also been obtained for the steady-state case. It is observed that the magnetic field, surface velocity, and suction and injection strongly affect the local skin friction coefficients in the tangential and azimuthal directions. The local skin friction coefficients increase when the angular velocity of the fluid or body increases with time, but these decrease with decreasing angular velocity. The skin friction coefficients in the tangential and azimuthal directions vanish when the angular velocities of fluid and the body are equal but this does not imply separation. When the angular velocity of the fluid is greater than that of the body, the velocity profiles reach their asymptotic values at the edge of the boundary layer in an oscillatory manner, but the magnetic field or suction reduces or suppresses these oscillations.  相似文献   

18.
The non-Newtonian blood flow, together with magnetic particles in a stenosed artery, is studied using a magneto-hydrodynamic approach. The wall slip condition is also considered. Approximate solutions are obtained in series forms under the assumption that the Womersley frequency parameter has small values. Using an integral transform method, analytical solutions for any values of the Womersley parameter are obtained.Numerical simulations are performed using MATHCAD to study the influence of stenosis and magnetic field on the flow parameters. When entering the stenosed area, blood velocity increases slightly, but increases considerably and reaches its maximum value in the stenosis throat. It is concluded that the magnitude of axial velocity varies considerably when the applied magnetic field is strong. The magnitude of maximum fluid velocity is high in the case of weak magnetic fields. This is due to the Lorentz's force that opposes motion of an electrically conducting fluid. The effect of externally transverse magnetic field is to decelerate the flow of blood. The shear stress consistently decreases in the presence of a magnetic field with increasing intensity.  相似文献   

19.
In the present investigation, we have studied the effects of mixed convection heat and mass transfer on peristaltic flow of Williamson fluid model in a vertical annulus. The governing equations of Williamson fluid model are simplified using the assumptions of long wavelength and low Reynold’s number. An approximated analytical and numerical solutions are found for the velocity field using (i) Perturbation method (ii) Shooting method. The comparisons of analytical and numerical solutions have been presented. The expressions for pressure rise, velocity against various physical parameter are discussed through graphs.  相似文献   

20.
This investigation pursues the study of Hall and ion‐slip effects on steady three‐dimensional flow of an incompressible second grade fluid. The partial differential equations are reduced to ordinary differential equations by using similarity variables. The resulting problems are solved by employing homotopy analysis method (HAM). The convergence of derived solutions is ensured. The influence of different physical parameters on the dimensionless velocities is examined by sketching plots. Variation of skin friction coefficients for different involved parameters is seen through tabulated values. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号