首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
借助巯基试剂,在纳米金颗粒表面修饰生物活性物质Mb,制备保持有Mb生物活性的功能化金纳米巯基乙胺-Au NPs-Mb.采用UV-Vis、FTIR光谱和投射电镜表征其结构,该纳米颗粒分布均匀且粒径均一,并显著改善了金纳米颗粒团聚现象.以Mb功能化金纳米为基元,采用单层自组装及层层自组装方式将其修饰到裸金电极表面.各Mb或Mb-Cu电极的电化学测试并未借助电子传递媒介.配位Cu~(2+)后,修饰有Mb的单层及层层自组装修饰的催化还原能力均显著提升.其中Cu~(2+)配位的{巯基乙胺-Au NPs-Mb}3/Au修饰电极作为一种新型H2O2生物传感器,响应时间大约为2 s,米氏常数KappM为0.787 mmol/L,表现出了较强的还原H2O2的催化活性,且稳定性较好.  相似文献   

2.
Aqueous dispersions of gold nanoparticles protected with a stimuli-sensitive diblock copolymer were studied as a function of pH and temperature. Poly(methacrylic acid)-block-poly(N-isopropylacrylamide), PMAA-b-PNIPAM, copolymer was synthesized using the RAFT technique. A one-pot method utilizing the dithiobenzoate functionalized polymer was used to prepare gold nanoparticles protected with PMAA-b-PNIPAM. The gold nanoparticles coated with block copolymers, with the PNIPAM block bound to the particle surface and PMAA as an outer block form stimuli-sensitive aggregates in water. The changes in the absorption maxima of the surface plasmon resonance, SPR, of the gold particles and in the size of the aggregates were investigated as a function of pH and temperature. pH was observed to affect the size of the aggregates, whereas the effect of temperature was moderate. However, a blue shift in the SPR was observed both with decreasing pH and increasing temperature. Whereas the PMAA blocks control the colloidal stability of the particles and their aggregates, the thermo-sensitive PNIPAM blocks have a noticeable effect on the polarity of the immediate surroundings of the particles.  相似文献   

3.
H Li  GS Ding  CY Yue  AN Tang 《Electrophoresis》2012,33(13):2012-2018
A novel and simple method for the preparation of silica nanoparticles having surface-functionalized diamino moiety (dASNPs) was reported in our paper and characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, and thermogravimetry techniques. To test this method practically, in this contribution we describe the enhanced separation of four plant auxins - indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 2,4-dichlorophenoxyacetic acid (dCPAA), and 2-(1-naphthyl) acetic acid (NAA) - by capillary electrochromatography using diamino moiety functionalized silica nanoparticles as pseudostationary phase (PSP) in the running buffer. The effect of pH, buffer concentration, and diamino moiety functionalized silica nanoparticles concentration on the selectivity of separation was investigated. A combination of the nanoparticles and running buffer reversed the electroosmotic direction making possible the rapid and efficient separation of the auxins from the auxins migrated in the same direction with the EOF under optimum experimental conditions. A good resolution of four auxins was obtained within 5.5 min under optimum experimental conditions. The precision (RSD, n = 5) was in the range of 0.72-0.91% and 1.89-2.23% for migration time and peak area response, respectively. The detection limits were 0.48, 0.44, 0.46, and 0.42 μM for NAA, IBA, IAA, and dCPAA, respectively. Furthermore, the method was successfully tested for the determination of IAA in the grapes.  相似文献   

4.
In this work, the spectroscopic properties of surface functionalized nanodiamond particles are investigated via Fourier transform infrared spectroscopy. The functionalization of the nanodiamond surface was achieved chemically using strong acid treatment method. The size dependent C=O stretching frequency (between 1680 and 1820 cm(-1)) are studied for particle diameter sizes from the 5 to 500 nm range. The surface C=O stretching frequencies at approximately 1820 cm(-1), for large particle size (500 nm), down shifted to 1725 cm(-1) (5 nm) with decreasing particle sizes. We attributed the shift as a result of hydrogen bond formation between the COOH groups in the carboxylated nanodiamond surfaces. Particle size was characterized with dynamic light scattering method and surface morphology of the particles was investigated with scanning electron microscopy. The influence of pH value on C=O stretching frequency is also analyzed. This finding affords useful information for the studying of surface functionalized nanodiamonds with implications for their interaction with biomolecules.  相似文献   

5.
A new method was developed for the simultaneous determination of three catecholamines in urine using aminophenylboronic acid functionalized magnetic nanoparticles extraction followed by high‐performance liquid chromatography with electrochemical detection. Novel aminophenylboronic acid functionalized magnetic nanoparticles were prepared by multi‐step covalent modification, and characterized by transmission electron microscopy, Fourier‐transformed infrared spectroscopy, X‐ray diffraction, and vibrating sample magnetometry. With the help of the high affinity between the boronate and cis‐diol group, the particles were used for the highly selective separation and enrichment of three major catecholamines, norepinephrine, epinephrine, and dopamine. Effects of the pH of the feed solution, the extraction time, the composition of the buffer solution, the amount of the magnetic particles, the elution conditions, and the recycling of aminophenylboronic acid functionalized magnetic nanoparticles were explored. Under the optimized conditions, 13–17‐fold enrichment factors were obtained. The linear ranges were 0.01–2.0 μg/mL for the studied analytes. The limits of detection and quantification were in the range of 2.0–7.9 and 6.7–26.3 ng/mL, respectively. The relative recoveries were in the range of 92–108%, with intraday and interday relative standard deviations lower than 6.8%. This method was successfully applied to analysis of catecholamines in real urine.  相似文献   

6.
Novel ester-functionalized polypyrrole-silica nanocomposite particles were prepared by oxidative copolymerization of pyrrole and N-succinimidyl ester pyrrole (50/50% initial concentrations), using FeCl3 in the presence of ultrafine silica nanoparticles (20 nm diameter). The N-succinimidyl ester pyrrole monomer was prepared in aqueous solution using 1-(2-carboxyethylpyrrole) and N-hydroxysuccinimide in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The resulting nanocomposites (N-succinimidyl ester polypyrrole-silica) are raspberry-shaped agglomerates of silica sol particles "glued" together by the insoluble poly(pyrrole-co-N-succinimidyl pyrrole). The N-succinimidyl ester polypyrrole-silica particles were characterized in terms of their size, density, copolymer content, and polydispersity. Scanning electron microscopy and disk centrifuge sedimentometry confirmed that the nanocomposite particles had narrow size distributions. X-ray photoelectron spectroscopy analysis indicated a silica-rich surface and a high surface concentration of N-succinimidyl ester groups. These nanoparticles exhibited good long-term dispersion stability. The chemical stability of the ester functions in aqueous media after several weeks of storage was monitored by FTIR spectroscopy. The functionalized nanocomposites were tested as bioadsorbents of human serum albumin (HSA). The very high amount of immobilized HSA determined by UV-visible spectroscopy is believed to be due to covalent binding. Incubation of the HSA-grafted nanocomposite with anti-HSA resulted in immediate flocculation, an indication that they are alternative candidates for visual diagnostic assays.  相似文献   

7.
Influence of molecular weight heterogeneity and drug solubility, drug loading and hydrodynamic conditions on drug release kinetics from gelatin nanoparticles were investigated. Also to assess the ability of gelatin nanoparticles as a potential intravascular probe for diagnostic purposes and in improving the biodelivery of cycloheximide (CHX), which is being used as a representative drug. Comparative characterization of 75 Bloom (type B, bovine), 175 and 300 Bloom (type A, porcine) gelatin nanoparticles was done to understand the phase behavior and hydrodynamic properties of gelatin chains and its nanoparticles. Gelatin nanoparticles were prepared by two-step desolvation method. Dynamic light scattering studies were performed to estimate hydrodynamic radii as well as intermolecular interaction. Effects of parameters like pH, temperature and molecular weight on the size and stability of the nanoparticles were studied. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) measurements were done for size and stability analysis. Enhanced visco-elastic properties of nanoparticles were observed as compared to normal solutions of gelatin.  相似文献   

8.
Chitosan nanoparticles were fabricated by a method of tripolyphosphate (TPP) cross‐linking. The influence of fabrication conditions on the physical properties and drug loading and release properties was investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV–vis spectroscopy. The nanoparticles could be prepared only within a zone of appropriate chitosan and TPP concentrations. The particle size and surface zeta potential can be manipulated by variation of the fabrication conditions such as chitosan/TPP ratio and concentration, solution pH and salt addition. TEM observation revealed a core–shell structure for the as‐prepared nanoparticles, but a filled structure for the ciprofloxacin (CH) loaded particles. Results show that the chitosan nanoparticles were rather stable and no cytotoxicity of the chitosan nanoparticles was found in an in vitro cell culture experiment. Loading and release of CH can be modulated by the environmental factors such as solution pH and medium quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this work the preparation of chitosan nanoparticle was investigated using methacrylic acid in different conditions and studied by particle size analyzer, zeta-potential, Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). The particle size was dependent on the chitosan concentration used during the preparation method. Nanoparticles with sizes as small as 60 nm were achieved, that can be extremely important for several applications. The nanoparticles solution was also pH-sensitive, due to swelling and aggregation of the nanoparticles. The nanoparticles obtained presented a very homogeneous morphology showing a quite uniform particles size distribution and a rather spherical shape.  相似文献   

10.
By chemical deposition of ultrafine particles of metallic palladium on the polymer matrix of poly-3,4-ethylenedioxythiophene (PEDOT) composite PEDOT/Pd films were obtained. The conditions of synthesis of the composite films in dependence on the duration of exposure of the reduced form of PEDOT film in a solution of palladium chloride, its concentration and the film thickness were studied. By the methods of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) it was shown that in the process of the synthesis of the composite films the nanosized palladium particles of predominantly quasispherical shape precipitated on the globular structure of the polymer. The size of the palladium nanoparticles in the composite PEDOT film and the nature of their distribution over the film bulk were revealed. An increase in the duration of deposition of the palladium nanoparticles on the film was shown to lead to an increase in their size and in the density of particles in the film.  相似文献   

11.
A synthetic method for platinum-ruthenium (PtRu) nanoparticles in aqueous media is proposed. This method employs citric acid as a capping agent and NaBH(4) as a reducing agent with the aid of pH control. The number-averaged size of the PtRu nanoparticles was ca. 2 nm. The crystal phase and chemical composition of the nanoparticles was investigated by X-ray diffraction measurement and scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis, which indicated that the nanoparticles mainly consisted of an alloy of Pt and Ru. Electrochemical measurement showed that the PtRu nanoparticles had catalytic activity for methanol oxidation.  相似文献   

12.
Polystyrene nanoparticles with grafted chains of an amino functionalized polymer were prepared by a two-step polymerization process. In the first step, the polystyrene seed particles were synthesized by the conventional batch emulsion polymerization using terpolymer HAS (hydroperoxide monomer, acrylic acid, and styrene) as a surface-active initiator. The surface of the obtained particles contains carboxyl groups, which are responsible for the latex stability, and residual undecomposed hydroperoxide groups. Therefore, in the second step, an amino functional monomer was grafted onto the hydroperoxide modified polystyrene particles by a "grafting from" approach. X-ray photoelectron spectroscopy, NMR, and scanning electron microscopy were used to examine the surface of the amino functionalized particles. The amount of incorporated amino groups onto the particles was determined by fluorescenometric titration. In general, the number of amino groups on the particle surface increased with the increase of the functional monomer content in the reaction mixture. The incorporation of the functional monomer was also confirmed by electrophoretic measurements. Final particles possess amphoteric character due to the presence of amino and carboxyl groups on the surface. Adsorption of human immunoglobulins G onto the amino functionalized particles was studied as a function of pH and ionic strength. The covalent binding of human IgG was performed using the glutaraldehyde preactivation method. The immunoreactivity of the latex-IgG complex was examined by the latex agglutination test.  相似文献   

13.
A new class of poly(vinyl acetate) (PVAc)/silica nanocomposite particles was successfully prepared in aqueous solution through a facile synthetic process. First, vinyl functionalized silica nanoparticles (VFSs) were synthesized using one-step method in aqueous emulsion, and then the vinyl groups located on the surface of VFSs were used to induced in situ polymerization of vinyl acetate. Scanning electron microscopy (SEM) images showed that VFSs and PVAc/silica nanocomposite particles all revealed highly monodispersed and uniform spheres. Especially, PVAc/silica nanocomposite particles obtained from transmission electron microscopy images presented an obvious core–shell structure, and the thickness of PVAc shell grafting on the surface of VFSs core was about 17 nm. In addition, the influence of the hydrolyzed and condensed time of vinyl triethoxysilane on the size and size distribution of VFSs was also investigated. The results of dynamic light scattering and SEM analysis indicated that the size and size distribution of VFSs decreased gradually with the extension of the reaction time from 6 to 48 h. Moreover, the structures and thermal properties of the samples were characterized via FT-IR and heat-flow DSC–TG.  相似文献   

14.
This paper introduces a kind of ZnO ultrafine particles modified with silica and trimethyl siloxane (TMS). Thus zinc carbonate hydroxide (ZCH) as the precursor of ZnO was synthesized using chemical precipitation method, and the precursor was modified in situ with silica and TMS. The modified ZnO ultrafine particles were obtained after calcinating the modified precursors. The surface properties of the modified ZnO ultrafine particles were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectra (XPS), scanning electron microscope (SEM), and transmission electron microscopy (TEM). The effects of the modifiers on the photocatalytic activity and UV shielding ability of ZnO ultrafine particles were also investigated and discussed.  相似文献   

15.
SnO2 nanoparticle-functionalized boron nitride nanotubes   总被引:2,自引:0,他引:2  
Boron nitride nanotubes (BNNTs) were synthesized by a carbon-free chemical vapor deposition method using boron and metal oxide as reactants. Then SnO(2) nanoparticles were functionalized on them via a simple wet chemistry method. Detailed transmission electron microscopy (TEM) observations reveal that SnO(2) nanoparticles may cover the tube surface or be encapsulated in tube channels. The lattice distances of both BNNT and SnO(2) have been changed due to the strong interactions between them. The band gap energy of SnO(2) particles is found enlarged due to the size effect and interaction with BNNTs.  相似文献   

16.
Hydroxyapatite (HAp) nanoparticles with spherical, rod-shaped or fiber-shaped morphologies were synthesized by wet chemical method in aqueous media. Scanning electron microscopy, dynamic light scattering, helium pycnometry, and aqueous electrophoresis techniques were used to characterize the nanoparticles in terms of their particle size and morphology, density and zeta potential, respectively. Stable "Pickering-type" emulsions were prepared using the HAp nanoparticles as a particulate emulsifier and methyl myristate as an oil phase above pH 7.7, but not below pH 6.1. These emulsions were characterized in terms of their emulsion type, mean droplet diameter and morphology using electrical conductivity, light diffraction and optical microscopy. Rapid demulsification could be induced by lowering the solution pH: addition of acid led to dissolution of the HAp nanoparticles attached on oil-water interface and the emulsion was destabilized. HAp nanoparticles precipitated by addition of base to the aqueous phase after demulsification and the HAp particles precipitated worked as an effective particulate emulsifier. This emulsification-demulsification cycle was reversible. Sintering of methyl myristate-in-water emulsion stabilized with the HAp nanoparticles led to a porous HAp material.  相似文献   

17.
This study deals with an investigation on the preparation and physicochemical interactions of ZnO nanoparticles with acid functionalized porphyrin [5‐mono‐(4‐carboxyphenyl)‐10,15,20‐triphenylporphyrin (CPTPP)] for photovoltaic applications in a detailed manner. Zinc acetate and sodium hydroxide were used as the starting materials for the synthesis of ZnO nanoparticles at 60 °C in an alcoholic medium. The freshly prepared fine particles were then functionalized with CPTPP. Both the virgin and pregnant ZnO particles were characterized by using UV‐Visible spectrophotometry (UV), fluorescence emission (PL), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The band gap energy obtained for ZnO particles, having a value of 3.47 eV, shows significant quantum confinement effect and enhanced photophysical activity. FTIR analysis of the doped ZnO nanostructures showed the presences of some chemical species. SEM analysis revealed a clear change in the surface morphologies of undoped ZnO. The average crystallite size of nanoparticles, calculated from XRD peaks, was found in the nano regime. The lattice parameters calculated for ZnO nanocrystals were also found in good agreement with those given in the literature. From the enhancement in the red shift of the UV‐Vis spectra, it is concluded that hybridization of acid functionalized porphyrin can cause a significant expansion in the total absorption region of ZnO semiconductor for photovoltaic applications.  相似文献   

18.
The size of carbon nanotube supported Pd and PdO nanoparticles was investigated on oxidatively functionalized multiwall carbon nanotubes. All samples were characterized by transmission electron microscopy, X-ray diffractometry, X-ray photoelectron spectroscopy and Raman spectroscopy. The average particle diameter calculated from TEM image analysis was found to be inversely proportional with the duration of the oxidation in nitric acid. Crystallite sizes determined from XRD patterns confirmed this general tendency.  相似文献   

19.
The aim of this work was to prepare chitosan nanoparticles loaded with antineoplastic drug Lomustine (LCNPs), by ionic-gelation method with homogenization. The nanoparticles were characterized for particle size, polydispersity index (PDI), surface morphology, encapsulation efficiency, in-vitro drug release and cytotoxicity on human lung cancer cell line L132 by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The particle size, zeta potential and encapsulation efficiency of prepared nanoparticles ranged from 75 ± 1.1 to 637 ± 1.6 nm (PDI from 0.05 ± 0.001 to 0.18 ± 0.007), 37.2 ± 0.21 to 53.8 ± 0.18 mV and 66.74 ± 1.4 to 98.0 ± 1.8% respectively. The particles were spherical in shape with smooth surface in scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Mechanical shearing by homogenization treatment significantly changed the nanoparticle size. The drug release rate was biphasic and diffusion controlled over the 8 h. LCNPs greatly inhibited the growth of the L132 cancer cell line used in this study in comparison to the native Lomustine (LMT).  相似文献   

20.
A direct current thermal plasma system was developed and applied to synthesize ultrafine carbon black by using PS (polystyrene) and HDPE (high density polyethylene) as carbon sources. The precursors were pyrolyzed at different temperatures and the pyrolysis products were employed to investigate the actual synthesis of carbon black through the plasma jet. Spherical carbon nanoparticles with a high degree of turbostratic structure were obtained, showing a fingerprint graphite structure with a large surface area and ultrafine particle size. The carbon black was characterized by transmission and scanning electron microscopy, powder X-ray diffraction, Raman spectroscopy, and nitrogen physisorption. Particle size distribution and dispersion stability in solvents were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号