首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Antimony(V) determination at an unmodified edge plane pyrolytic graphite (EPPG) electrode using anodic stripping voltammetry (ASV) by depositing beyond the hydrogen wave is shown in this paper. By depositing beyond the hydrogen wave, we report a sensitive method to determine pentavalent antimony at a carbon electrode in 0.25 M HCl. Using differential pulse anodic stripping voltammetry (DPASV), a bare EPPG electrode gave a detection limit of 5.8±0.02 nM without the need for surface modification. This level is greatly within the EU limit for drinking water of 40 nM.  相似文献   

2.
A highly sensitive and selective voltammetric procedure is described for the simultaneous determination of eleven elements (Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe) in water samples. Firstly, differential pulse anodic stripping voltammetry (DPASV) with a hanging mercury drop electrode (HMDE) is used for the direct simultaneous determination of Cd, Pb, Cu, Sb and Bi in 0.1 M HCI solution (pH = 1) containing 2 M NaCl. Then, differential pulse cathodic stripping voltammetry (DPCSV) is used for the determination of Se in the same solution. Zn is subsequently determined by DPASV after raising the pH of the same solution to pH 4. Next, the pH of the medium is raised to pH 8.5 by adding NH3/NH4Cl buffer solution for the determination of Mn by DPASV. Ni and Co are determined in the same solution by differential pulse adsorptive stripping voltammetry (DPAdSV) after adding DMG (1 x 10(-4) M). Finally, 1 x 10(-5) M 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is added to the solution for the determination of Fe by DPAdSV. The optimal conditions are described. Relative standard deviations and relative errors are calculated for the eleven elements at three different concentration levels. The lower detection limits for the investigated elements range from 1.11 x 10(-10) to 1.05 x 10(-9)M, depending on the element determined. The proposed analysis scheme was applied for the determination of these eleven elements in some ground water samples.  相似文献   

3.
Dissolved Cu(II) speciation in unpolluted soil solutions from different horizons was studied using differential pulse anodic stripping voltammetry (DPASV). Three sites were selected according to topography and monitored for three years. Experiments evidence Cu(II) can be bound by DOM (Dissolved Organic Matter) through complexation and/or adsorption reactions. The complexation capacity and the corresponding conditional stability constant were determined for complexation reactions. The adsorbing sites were titrated. A potential binding coefficient was calculated to compare both types of reactions. Results show adsorption is less frequent than complexation but exhibits higher binding coefficient.  相似文献   

4.
Yang M  Zhang Z  Hu Z  Li J 《Talanta》2006,69(5):1162-1165
As a representation of metalloproteins, metallothionein (MT), which plays important biological and environmental roles such as in the metabolism and detoxification of some metals, was detected at bismuth film electrode (BiFE) by differential pulse anodic stripping voltammetry (DPASV). In pH 2–5.5, two well-defined anodic peaks were produced and attributed to the Zn2+ and Cd2+ inherent to MT. The calibration plot of DPASV peak currents for Cd2+ inherent to MT versus MT concentrations showed a good linearity with a detection limit of 3.86 × 10−8 mol/L for MT. As a non-toxic excellent electrode material, BiFE shows good performance for detecting MT, and is expected to find further applications in the studies of many other metalloproteins.  相似文献   

5.
An analytical study on the use of graphite-epoxy composite (GEC) electrodes for differential pulse anodic stripping voltammetry (DPASV) of heavy metals is presented. This study is accompanied by microscopic observations of the electrode surface before and after the stripping step in comparison to glassy carbon electrode. GEC electrodes show much better accumulation properties and consequently acceptable behaviour which makes them suitable as working electrodes in the DPASV of heavy metals. Lead determination in real water samples in a batch system as well as some preliminary results in a flow-through system are presented. The detection limits in batch measurements were 100ppb for Cd, 10pb for lead and 50ppb for copper. The detection limit for lead in the flow-through system was similar to that in the batch. The results obtained show that these low cost and easy to prepare materials can be of interest in future research concerning stripping techniques of heavy metals and other analytes.  相似文献   

6.
A novel analytical procedure for the determination of Pb(II) and Cd(II) in herbal medicines by differential pulse anodic stripping voltammetry (DPASV) on Nafion‐coated bismuth film electrode (NCBFE) was proposed and experimentally validated. Various experimental parameters, which influenced the response of the NCBFE to these metals in real samples, were optimized. The results showed that there were well‐defined peaks of Pb and Cd in herb samples at deposition potential of ?1.2 V and deposition time of 300 s. The analytical performance of the NCBFE was evaluated in the presence of dissolved oxygen, with the determination limits of 0.35 µg·L?1 for Pb and 0.72 µg·L?1 for Cd and recoveries of 87.8% –105.4% for Pb and 89.5% –108.5% for Cd obtained from different samples. The Pb and Cd concentrations in the studied samples have been also determined by graphite furnace atomic absorption spectrometry (GFAAS), suggesting that there was a satisfactory agreement between the two techniques, with relative errors lower than 6.5% in all cases. The great advantages of the proposed method over the spectroscopic method were characterized by its simplicity, selectivity and short analysis time, simultaneous analysis of different metals and cost‐efficiency.  相似文献   

7.
Wei Wei Zhu  Nian Bing Li  Hong Qun Luo   《Talanta》2007,72(5):1733-1737
A stannum film electrode has been developed for the simultaneous determination of trace levels of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry (DPASV). The stannum film electrode was generated in situ by depositing simultaneously the stannum film and the metals obtained by reduction of Cd(II) and Cr(III) at −1.4 V on a glassy carbon electrode. Then, the reduced products were oxidized by scanning the potential of the electrode from −1.4 to −0.4 V using DPASV. The electrode exhibited well-defined and separated stripping signals for both metals accompanied with a low background contribution. The possible mechanism of this design was proposed. Under the optimized working conditions, the detection limit was 2.0 and 1.1 μg l−1 for Cr(III) and Cd(II) at a deposition time of 3 min. Finally, the stannum film electrode was successfully applied to the determination of Cd(II) in tap water with satisfactory results.  相似文献   

8.
A new automated batch method for the determination of ultratrace metals (nanogram per liter level) was developed and validated. Instrumental and chemical parameters affecting the performance of the method were carefully assessed and optimized. A wide range of voltammetric methods under different chemical conditions were tested. Cadmium, lead and copper were determined by anodic stripping voltammetry (ASV), while nickel, cobalt, rhodium and uranium by adsorptive cathodic stripping voltammetry (AdCSV). The figures of merit of all of these methods were determined: very good precision and accuracy were achieved, e.g. relative percentage standard deviation in the 4-13% for ASV and 2-5% for AdCSV.The stripping methods were applied to the determination of cadmium, lead, copper, nickel, cobalt, rhodium and uranium in lake water samples and the results were found to be comparable with ICP-MS data.  相似文献   

9.
Water is a vital commodity for every living entity on the planet. However, water resources are threatened by various sources of contamination from pesticides, hydrocarbons and heavy metals. This has resulted in the development of concepts and technologies to create a basis for provision of safe and high quality drinking water. This paper focuses on the simultaneous quantitative determination of three common contaminants, the heavy metals cadmium, lead and copper. Multivariate calibration was applied to voltammograms acquired on in‐house printed carbon‐ink screen‐printed electrodes by the highly sensitive electrochemical method of differential pulse anodic stripping voltammetry (DPASV). The statistically inspired modification of partial least squares (SIMPLS) algorithm was employed to effect the multivariate calibration. The application of data pretreatment techniques involving range‐scaling, mean‐centering, weighting of variables and the effects of peak realignment are also investigated. It was found that peak realignment in conjunction with weighting and SIMPLS led to the better overall root mean square error of prediction (RMSEP) value. This work represents significant progress in the development of multivariate calibration tools in conjunction with analytical techniques for water quality determination. It is the first time that multivariate calibration has been performed on DPASV voltammograms acquired on carbon‐ink screen‐printed electrodes.  相似文献   

10.
In this paper 8‐hydroxyquinoline (HQ) and ionic liquid (IL) modified carbon paste electrode was fabricated and used for the sensitive determination of cadmium(II) with differential pulse anodic stripping voltammetry (DPASV). The modified electrode was prepared by the addition of HQ and IL 1‐ethyl‐3‐methylimidazoliam ethylsulphate as the modifiers into the traditional carbon paste mixture. Cd(II) was preconcentrated and reduced on the surface of the modified electrode at the potential of ‐1.0 V (vs. SCE) by the co‐contributions from the formation of HQ‐Cd(II) complex and the accumulation effect of IL. Then the reduced Cd on the electrode surface was reoxidized by DPASV with a sensitive oxidation peak appeared at ‐0.79 V (vs. SCE). Under the optimal conditions the oxidation peak current was proportional to the Cd(II) concentration in the range from 0.03 to 2.0 mol/L with the detection limit as 5.0 nmol/L (3σ). The proposed method was successfully applied to the water samples detection with the recovery in the range from 95.6% to 96.6%.  相似文献   

11.
Yang Wang  Jinglian Cao  Fei Wang  Qin Xu  Chun Yang 《Talanta》2009,77(3):1203-1207
Sequential injection lab-on-valve (LOV) was first proposed for analyzing ultra-trace amounts of Pb using differential pulse anodic stripping voltammetry (DPASV) with a miniaturized electrochemical flow cell fabricated in the LOV unit. Deposition and stripping processes took place between the renewable mercury film carbon paste electrode and sample solution, the peak current was employed as the basis of quantification. The mercury film displayed a long-term stability and reproducibility for at least 50 cycles before next renewal, the properties of integrated miniature LOV unit not only enhanced the automation of the analysis procedure but also declined sample/reagent consumption. Potential factors that affect the present procedure were investigated in detail, i.e., deposition potential, deposition time, electrode renewable procedure and the volume of sample solution. The practical applicability of the present procedure was demonstrated by determination of Pb in environmental water samples.  相似文献   

12.
This work addresses the simultaneous determination of copper(II) and antimony(III) in real matrices by differential pulse (DPASV) and fundamental harmonic alternating current anodic stripping voltammetry (ACASV). The voltammetric measurements were carried out using as supporting electrolyte the same acidic mixture (nitric, hydrochloric and perchloric acids) used in the dissolution of the real matrices with proper dilution. The procedure of the sample preparation is thus reduced to one step hence avoiding errors from long and complex sample handlings prior to the instrumental measurement. The results were verified by the analysis of the standard reference materials NBS-SRM 631 Spectrographic Zinc Spelter D-2 and BCS 207/2 Gunmetal. The precision, expressed as relative standard deviation, and the accuracy, expressed as relative error, were, in all cases, less than 5%; the detection limit, for each element and in the experimental conditions employed, was around 10−7 M. The standard addition technique improved the resolution of the voltammetric method, even in the case of very high metal concentration ratios.  相似文献   

13.
A technique has been developed to study chemical speciation of copper in freshwaters by competing ligand exchange (CLE) method using anodic stripping voltammetry (ASV) in the differential pulse (DP) mode with ethylenediaminetetraacetic acid (EDTA) as a competing ligand. The voltammetric behavior of Cu(II)-EDTA complex has been investigated using DPASV. When DPASV is used at an appropriate deposition potential, the inert Cu(II)-EDTA complex becomes electroactive, and is reduced directly. Furthermore, at the same deposition potential, Cu(II)-fuvic acid and Cu(II)-humic acid complexes do not contribute significantly to the analytical signal, which makes EDTA a suitable competing ligand in the determination of copper speciation using CLE-ASV. This method has been applied to freshwater samples from Rideau Canal (Ottawa, ON, Canada). The analysis of the copper titration data of these freshwater samples has indicated the presence of a very strong copper-binding ligand with a conditional stability constant of approximately 1020 and a corresponding very high concentration (above 100 nM) of the ligand.  相似文献   

14.
The influence of an adsorbed layer of the natural organic matter (NOM) on voltammetric behaviour of copper on a mercury drop electrode in natural water samples was studied. The adsorption of NOM strongly affects the differential pulse anodic stripping voltammogram (DPASV) of copper, leading to its distortion. Phase sensitive ac voltammetry confirmed that desorption of adsorbed NOM occurs in general at accumulation potentials more negative than −1.4 V. Accordingly, an application of negative potential (−1.6 V) for a very short time at the end of the accumulation time (1% of total accumulation time) to remove the adsorbed NOM was introduced in the measuring procedure. Using this protocol, a well-resolved peak without interferences was obtained. It was shown that stripping chronopotentiogram of copper (SCP) in the depletive mode is influenced by the adsorbed layer in the same manner as DPASV. The influence of the adsorbed NOM on pseudopolarographic measurements of copper and on determination of copper complexing capacity (CuCC) was demonstrated. A shift of the peak potential and the change of the half-peak width on the accumulation potential (for pseudopolarography) and on copper concentration in solution (for CuCC) were observed. By applying a desorption step these effects vanished, yielding different final results.  相似文献   

15.
Complexing capacity of naturally occurring ligands in Vitis vinifera (Tempranillo variety) wines has been studied with respect to two target metals (Cu and Zn) by differential pulse anodic stripping voltammetry (DPASV). Eight commercial wines of two certified brands of origin (CBO) and a young wine along its vinification process were monitored. Conditional stability constants and total complexing ligand(s) concentration(s) have been calculated for both metals. Discussion of the particular electrochemical responses for Cu and Zn for all samples is presented. A follow-up of the Cu stripping response allowed differentiating a commercial wine from one under processing related to the cupric casse phenomenon. Interaction of Cu with two molecular forms of cyanidin has been theoretically modeled at natural wine pH.  相似文献   

16.
《Analytical letters》2012,45(11):853-865
Abstract

The performance of a polarographic analyser equipped with a long-lasting, sessile-drop mercury electrode is described in the direct, simultaneous determination of heavy metals (cadmium, copper and lead) in some Coca Cola samples (drawn from commercial bottles or tins). The determinations were performed by the differential pulse anodic stripping voltammetric technique using a programmed fully automated sequence (i.e., deposition-stripping-recording). The results obtained (1-3, 6-25 and 1.5-3.3 ppb for cadmium, copper and lead, respectively) as well as those previously obtained in the stripping analysis of some sea-waters and mineral-waters samples suggest that the proposed automated device ensures sufficient sensitivity and accuracy to be employed in the DPASV determination of toxic metals (at trace and subtrace levels) in natural waters and beverages.  相似文献   

17.
A critical comparison of phase-selective fundamental harmonic a.c. anodic stripping voltammetry and differential pulse anodic stripping voltammetry for the determination of Pb, Cd, Cu and Zn in sea-water is reported. Differential pulse anodic stripping voltammetry was found to be slightly more sensitive than the a.c. technique, but the effect of the charging current could be more effectively eliminated by the latter, especially in the determination of zinc(II) and copper(II). The detection limits for both techniques were found to be about 10–10-10–8 M for all four elements. The precision, expressed as relative standard deviation, was of the order of 2–5% for the fundamental harmonic a.c. method and 5–8% for differential pulse voltammetry. The accuracy (expressed as recovery) was 95–105% for the former and 90–110% for the latter.  相似文献   

18.
Determination of copper (Cu), zinc (Zn) and manganese (Mn) micronutrients in soil samples have been studied for an efficient fertiliser application. Plant-available micronutrients of soils were extracted with DTPA extraction procedure, then differential pulse stripping voltammetry (DPSV) and square wave stripping voltammetry (SWSV) methods were performed with inexpensive and disposable pencil graphite electrode for determination of Cu(II), Zn(II) and Mn(II). Parameters such as deposition potential, deposition time, pH and concentration of the supporting electrolyte were optimised for these ions. Under optimised conditions, the limits of detection were found as 0.01 mg L?1 for Cu(II) and 0.02 mg L?1 for Zn(II) and 0.25 mg L?1 for Mn(II). Relative standard deviation (%RSD) was 6.80, 8.86 and 3.29 for Cu(II), Zn(II) and Mn(II), respectively. The experimental study was conducted using a flame atomic absorption spectroscopy. The described stripping voltammetry methods were successfully applied for the determination of Mn(II), Cu(II) and Zn(II) in soil samples.  相似文献   

19.
Boron-doped nanocrystalline diamond thin-film electrodes were employed for the detection and quantification of Ag (I), Cu (II), Pb (II), Cd (II), and Zn (II) in several contaminated water samples using anodic stripping voltammetric (ASV). Diamond is an alternate electrode that possesses many of the same attributes as Hg and, therefore, appears to be a viable material for this electroanalytical measurement. The nanocrystalline form has been found to perform slightly better than the more conventional microcrystalline form of diamond in this application. Differential pulse voltammetry (DPASV) was used to detect these metal ions in lake water, well water, tap water, wastewater treatment sludge, and soil. The electrochemical results were compared with data from inductively coupled plasma mass spectrometric (ICP-MS) and or atomic absorption spectrometric (AAS) measurements of the same samples. Diamond is shown to function well in this electroanalytical application, providing a wide linear dynamic range, a low limit of quantitation, excellent response precision, and good response accuracy. For the analysis of Pb (II), bare diamond provided a response nearly identical to that obtained with a Hg-coated glassy carbon electrode.  相似文献   

20.
A method using commercially available sputtered bismuth screen‐printed electrodes (BispSPE), as substitute to mercury electrodes, for the determination of trace Pb(II) and Cd(II) ions in drinking well water samples collected in a contaminated area in The Republic of El Salvador by means of differential pulse anodic stripping voltammetry (DPASV) has been proposed. The comparable detection and quantification limits obtained for both BispSPE and hanging mercury drop electrode (HMDE), together with the similar results with a high reproducibility obtained in these water samples analyses recommend the applicability of BispSPE for the determination of low level of metal concentrations in natural samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号