首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We report efficient host-guest solid-state light-emitting electrochemical cells (LECs) utilizing a cationic terfluorene derivative as the host and a red-emitting cationic transition metal complex as the guest. Carrier trapping induced by the energy offset in the lowest unoccupied molecular orbital (LUMO) levels between the host and the guest impedes electron transport in the host-guest films and thus improves the balance of carrier mobilities of the host films intrinsically exhibiting electron preferred transporting characteristics. Photoluminescence measurements show efficient energy transfer in this host-guest system and thus ensure predominant guest emission at low guest concentrations, rendering significantly reduced self-quenching of guest molecules. EL measurements show that the peak EQE (power efficiency) of the host-guest LECs reaches 3.62% (7.36 lm W(-1)), which approaches the upper limit that one would expect from the photoluminescence quantum yield of the emissive layer (~0.2) and an optical out-coupling efficiency of ~20% and consequently indicates superior balance of carrier mobilities in such a host-guest emissive layer. These results are among the highest reported for red-emitting LECs and thus confirm that in addition to reducing self-quenching of guest molecules, the strategy of utilizing a carrier transporting host doped with a proper carrier trapping guest would improve balance of carrier mobilities in the host-guest emissive layer, offering an effective approach for optimizing device efficiencies of LECs.  相似文献   

2.
The adsorption properties of a new nanoporous organic zeolite with respect to acetylene and Ar were studied by volumetric adsorption analysis, microcalorimetric experiments, and synchrotron high-resolution X-ray powder diffraction. This allowed us to locate the guest molecules inside the host channels and characterize the host-guest interactions.  相似文献   

3.
沸石微孔晶体材料作为客体功能物种的主体材料在主-客体组装化学中发挥着越来越重要的作用,在微型激光器、非线性光学、生物成像、光放大及光显示等高技术领域已显示出广阔、诱人的发展前景.本文介绍国内外,特别是河北工业大学在稀土/L型沸石主-客体杂化功能材料的组装、结构及其发光性能的研究工作,具体包括:稀土有机配合物在L沸石孔道内的组装、L型沸石-有机高分子透明杂化发光材料的制备及稀土有机配合物诱导控制的L型沸石自组装等.此外,本文对稀土/L型沸石主-客体杂化发光功能材料的研究进行了展望.  相似文献   

4.
On the basis of cyclotrixylohydroquinoylene ( CTX ), a novel water-soluble phospholate-based CTX derivative ( WPCTX ) was prepared with facile synthetic procedure and satisfying yield. Several model guest molecules were selected to investigate WPCTX ′s host-guest properties. Based on the study of the host and model guest complexation, a tetraphenylethylene derivative from model guest was employed as a guest molecule ( G ) to form WPCTX⊃G nanoparticles (NPs) with WPCTX through further supramolecular self-assembly in water. Moreover, a hydrophobic fluorescent dye, Eosin Y( ESY ) or Nile red ( NiR ), was encapsulated in WPCTX⊃G NPs to construct two types of artificial light-harvesting systems. Their high antenna effect demonstrated such NPs successfully mimicked light-harvesting systems in nature.  相似文献   

5.
Mercury(II) halides HgX(2) (X=Cl, Br, I) were inserted into the voids of the crystalline microporous SiO(2) modifications deca-dodecasil 3R (short term: DDR), silica-theta-1 (TON), silica-ferrierite (FER) and silicalite-1 (MFI) by vapour phase loading. The properties of the occluded guest species were studied by X-ray absorption spectroscopy (X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis), UV/Vis spectroscopy, and IR and Raman spectroscopy. The methods reveal the presence of HgX(2) molecules in the insertion compounds. The interactions between these electroneutral guest molecules and the electroneutral surrounding SiO(2) framework are weak. In addition, no indication of any significant guest-guest interaction between the embedded molecules was found, in contrast to the analogous iodine insertion compounds, where these become more important with increasing pore dimensionality (G. Wirnsberger et al., Angew. Chem. 1996, 108, 2951-2953; Angew. Chem. Int. Ed. Engl. 1996, 35, 2777). Analysis of the HgL(3) EXAFS confirms a coordination number of two for Hg and gives HgX bond lengths of 2.26 +/- 0.02, 2.38 +/- 0.02 and 2.57 +/- 0.02 A for the trapped HgCl(2), HgBr(2) and HgI(2) molecules, respectively. These values are very close to those of the corresponding molecules in the vapour phase and are the shortest determined for HgX(2) molecules in solid-state compounds to date (a comparably short distance only appears in the recently reported [Cu(2-pyrazinecarboxylato)(2)HgI(2)] x HgI(2) with d(Hg[bond]I)=2.577(2) A; Dong et al., Angew. Chem. 2000, 112, 4441-4443; Angew. Chem. Int. Ed. 2000, 39, 4271). Thus, there emerges a picture of almost unperturbed HgX(2) molecules, similar to those in the vapour phase or in non-coordinating solvents, in a solid crystalline matrix of high temperature stability, a very unusual state of matter. Despite the weakness of the host-guest interactions, investigations on small crystallites of the HgX(2)-TON composites using a Raman microscope show a strong polarization dependence, providing evidence for an orientational alignment of the HgX(2) molecules inside the one-dimensional pore system of this host. For these reasons, the host matrices used in this study can be viewed as orienting solid solvents, coordinating only very weakly to the inserted HgX(2) guest molecules, but exhibiting a strong geometrical template function for their alignment. The concept of using electroneutral SiO(2) modifications as host components for a modular construction of new host-guest compounds thus allows the designed construction of ordered guest assemblies, with the pore systems of the rigid host matrices acting as space-confining and ordering templates for the guest components.  相似文献   

6.
Cholic acid (CA) forms inclusion crystals that have a sandwich-type lamellar structure constructed by the alternative stacking of host bilayers and guest layers. Five disubstituted benzenes, o-toluidine, m-fluoroaniline, o-chlorotoluene, o-bromotoluene, and indene, are accommodated in the two-dimensional void space between the host bilayers at 1:2 host-guest stoichiometries. Thermal gravimetric analysis of the inclusion crystals revealed that all the guest molecules, except o-toluidine, are released in two separate steps, indicating the formation of intermediate crystals after the first guest release. Adequate heat treatment of the four inclusion crystals induces release of half or three quarters of the guest molecules. X-ray diffraction patterns of the intermediate crystals revealed that the crystals have a bilayer structure the same as those of the common CA inclusion crystals. They have one-dimensional cavities, in which the guest molecules are included at a 1:1 or 2:1 host-guest stoichiometry. These facts indicate that the host bilayers move 1.6-4.5 A perpendicular to the layer direction by desorption of the guest molecules. Furthermore, a reverse structural change is also achieved by absorption of the guest molecules to regenerate the starting sandwich-type inclusion crystals. This reversible change in the host bilayer by the guest sorption and desorption is a novel example of organic intercalation materials.  相似文献   

7.
Sulfated cyclodextrins have recently emerged as potential candidates for producing host–induced guest aggregation with properties better than p-sulfonatocalixarenes that have previously shown numerous applications involving the phenomena of host-induced guest aggregation. In the class of sulfated cyclodextrins (SCD), sulfated β-cyclodextrin (β-SCD) remains the most extensively investigated host molecule. Although it is assumed that the host-induced guest aggregation is predominantly an outcome of interaction of the guest molecule with the charges on the exterior of SCD cavity, it has not been deciphered whether the variation in the cavity size will make a difference in the efficiency of host-induced guest-aggregation process. In this investigation, we present a systematic study of host–induced guest aggregation of a cationic molecular rotor dye, Thioflavin T (ThT) with three different sulfated cyclodextrin molecules, α-SCD, β-SCD and γ-SCD, which differ in their cavity size, using steady-state emission, ground-state absorption and time-resolved emission measurements. The obtained photophysical properties of ThT, upon interaction with different SCD molecules, indicate that the binding strength of ThT with different SCD molecules correlate with the cavity size of the host molecule, giving rise to the strongest complexation of ThT with the largest host molecule (γ-SCD). The binding affinity of ThT towards different host molecules has been supported by molecular docking calculations. The results obtained are further supported with the temperature and ionic strength dependent studies performed on the host-guest complex. Our results indicate that for host–induced guest aggregation, involving oppositely charged molecules, the size of the cavity also plays a crucial role beside the charge density on the exterior of host cavity.  相似文献   

8.
1H NMR spectra and fluorescence analysis revealed that the molecular shuttle and pseudorotaxane assembly of Q[7] with guest G2+ can be significantly switched via protonation and deprotonation of the terminal carboxylates of the guest.  相似文献   

9.
Pore-space homogeneity of zeolite NaX was probed by pulsed field gradient (PFG) NMR diffusion studies with n-butane as a guest molecule. At a loading of 0.75 molecules per supercage, a wide spectrum of diffusivities was observed. Guest molecules in the (well-shaped) zeolite crystallites were thus found to experience pore spaces of quite different properties. After loading enhancement to 3 molecules per supercage, however, molecular propagation ideally followed the laws of normal diffusion in homogeneous media. At sufficiently high guest concentrations, sample heterogeneity was thus found to be of no perceptible influence on the guest mobilities anymore.  相似文献   

10.
Six kinds of naphthyl urea and thiourea podands were designed and synthesized. The interaction between these compounds and various guest anions are studied in molecular level via absorption, fluorescence and 1H NMR spectra. The experiments show that tri-podal urea or thiourea host can bind H2PO4-or HSO4-selectively and form a host-guest complex thus inducing a change in photophysical properties of host molecule. Through comparison between urea and thiourea compounds used as host molecules, the stability constants and stoichiometry of the complexes have been determined. The binding manner and possible structures of them have been proposed.  相似文献   

11.
The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs.  相似文献   

12.
This review supplied direct insight of host-guest molecule system by using COR as the guest molecule.  相似文献   

13.
Cyclic peptoids are macrocyclic N-substituted oligoglycines, with remarkable structural, chemical and physical properties. The gas adsorption properties of a permanently porous hexameric cyclopeptoid decorated with four propargyl and two methoxyethyl side chains were monitored by in situ X-ray powder diffraction (XRPD). High-resolution XRPD data together with Rietveld and density functional based tight binding (DFTB) method allowed us to locate propyne guest molecules inside the host channels, even though the powder sample contains more than one phase. We were able to characterize the host-guest interactions, providing useful information on the host recognition sites and discuss host adaptiveness and host–guest chemical affinity in comparison with analogous compounds.  相似文献   

14.
The present work is planned for a simple, inexpensive and efficient approach for the synthesis of Cu1-xFexS (x = 0.00, 0.01, 0.03, 0.05 and 0.07) nanoparticles via simplistic chemical co-precipitation route by using ethylene diamine tetra acetic acid (EDTA) as a capping molecules. As synthesized nanoparticles were used as competent catalysts for degradation of rhodamine-B organic dye pollutant. The properties of prepared samples were analyzed with energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible optical absorption spectroscopy, Fourier transform infrared (FTIR) spectra, Raman spectra and vibrating sample magnetometer (VSM). EDAX spectra corroborated the existence of Fe in prepared nanoparticles within close proximity to stoichiometric ratio. XRD, FTIR and Raman patterns affirmed that configuration of single phase hexagonal crystal structure as that of (P63/mmc) CuS, without impurity crystals. The average particle size estimated by TEM scrutiny is in the assortment of 5–10 nm. UV-visible optical absorption measurements showed that band gap narrowing with increasing the Fe doping concentration. VSM measurements revealed that 3% Fe doped CuS nanoparticles exhibited strong ferromagnetism at room temperature and changeover of magnetic signs from ferromagnetic to the paramagnetic nature with increasing the Fe doping concentration in CuS host lattice. Among all Fe doped CuS nanoparticles, 3% Fe inclusion CuS sample shows better photocatalytic performance in decomposition of RhB compared with the pristine CuS. Thus as synthesized Cu0·97Fe0·03S nanocatalysts are tremendously realistic compounds for photocatalytic fictionalization in the direction of organic dye degradation under visible light.  相似文献   

15.
Mesoporous materials have a high potential for a number of different applications in Materials Science such as in molecular sieving, as masks for the formation of nanometre-sized metallic wires, as novel drug-delivery systems or as advanced host systems for catalysis. For many of these applications a thorough understanding of the interaction of guest molecules within the host matrix is required. In this tutorial review, we cover recent single-molecule experiments that allow the investigation of host-guest dynamics with unprecedented detail. We will show how molecules diffusing in samples with (almost) perfect domain ordering still show a large heterogeneity in their mobility and interaction with the host. With the presented methodology it is now possible to dramatically improve our understanding of host-guest interactions and in return develop new nano-structured mesoporous materials with properties optimised for a certain application.  相似文献   

16.
[reaction: see text] A guest molecule-a bis-N-tetraethyleneglycol-substituted 3,3'-difluorobenzidine derivative-has been synthesized, and its complexation with the host, cyclobis(paraquat-p-phenylene), has been investigated. This host-guest complex was then employed in the template-directed synthesis of a blue-colored [2]rotaxane. The color of this [2]rotaxane arises from the charge-transfer absorption band between the HOMO of the guest and the LUMO of the host. This host-guest complex, and the derived [2]rotaxane, completes the donor-acceptor-based RGB (red/green/blue) color complex set.  相似文献   

17.
Novel gold nanoparticles modified with a mixed self-assembled monolayer of porphyrin alkanethiol and short-chain alkanethiol were prepared (first step) to examine the size and shape effects of surface holes (host) on porphyrin-modified gold nanoparticles. The porphyrin-modified gold nanoparticles with a size of about 10 nm incorporated C60 molecules (guest) into the large, bucket-shaped holes, leading to the formation of a supramolecular complex of porphyrin-C60 composites (second step). Large composite clusters with a size of 200-400 nm were grown from the supramolecular complex of porphyrin-C60 composites in mixed solvents (third step) and deposited electrophoretically onto nanostructured SnO2 electrodes (fourth step). Differences in the porphyrin:C60 ratio were found to affect the structures and photoelectrochemical properties of the composite clusters in mixed solvents as well as on the SnO2 electrodes. The photoelectrochemical performance of a photoelectrochemical device consisting of SnO2 electrodes modified with the porphyrin-C60 composites was enhanced relative to a reference system with small, wedged-shaped surface holes on the gold nanoparticle. Time-resolved transient absorption spectroscopy with fluorescence lifetime measurements suggest the occurrence of ultrafast electron transfer from the porphyrin excited singlet states to C60 or the formation of a partial charge-transfer state in the composite clusters of supramolecular complexes formed between porphyrin and C60 leading to efficient photocurrent generation in the system. Elucidation of the relationship between host-guest interactions and photoelectrochemical function in the present system will provide valuable information on the design of molecular devices and machines including molecular photovoltaics.  相似文献   

18.
ABSTRACT

Three 1,4-disubstituted anthraquinone dyes with bis(4-n-butylphenyl) substituents connected via amine or amide linking groups have been studied as guest molecules dissolved in the nematic host E7. UV-visible absorption spectroscopy has shown each of the dyes to exhibit multiple absorption bands in the visible region, and dichroic order parameters obtained from polarised spectra of aligned guest–host samples were shown to differ significantly between the bands for each dye, and between the dyes. Time-dependent density functional theory calculations indicated that each dye exhibits several transitions, giving transition dipole moment vectors with a range of orientations, and fully atomistic molecular dynamics simulations of the guest–host mixtures showed differences in the calculated molecular alignments of the dyes. Combining the results from these two sets of calculations enabled a comparison of molecular alignment models based on the moments of inertia and the surface tensors of the dyes. The match between calculated and experimental values was improved significantly when using the surface tensor rather than the moment of inertia model, indicating that the shapes of the molecular surfaces of these dyes are crucial to their alignment. A novel method of calculating polarised UV-visible absorption spectra of dyes in liquid crystal hosts is also presented.  相似文献   

19.
Five generations of poly(propylene imine) dendrimers have been modified by palmityl and adamantyl endgroups via a thiourea linkage. The synthesis of the thiourea dendrimers DAB-dendr-(NHCSNHAd)(n) and DAB-dendr-(NHCSNHC(16)H(33))(n) (n = 4, 8, 16, 32, 64) proceeds smoothly via the amino-terminated DAB dendrimer and the adamantyl and palmityl isothiocyanates, respectively. The properties of the thiourea dendrimers have been studied by IR and (1)H NMR, including relaxation (T1, T2) measurements. The thiourea dendrimers are used as multivalent hosts for a number of guest molecules containing a terminal urea-glycine unit in organic solvents. The host-guest interactions have been investigated using 1D- and NOESY-NMR. These investigations show that the guest molecules bind to the dendritic host via thiourea (host)-urea (guest) hydrogen bonding, and ionic bonding between the terminal guest carboxylate moiety and the outer shell tertiary amines of the dendrimer. The ability to bind guest molecules of the adamantyl- and palmitylthiourea dendrimers has been compared with their respective urea containing dendrimer analogues, by NMR-titration, and competition experiments. Upon complexation, the thiourea dendrimer hosts show a larger downfield NH shift than the corresponding urea dendrimer hosts, indicative of stronger hydrogen bonding in the complexed state. Furthermore, microcalorimetry has been used to determine binding constants for formation of the host-guest complexes; the binding constants are typically in the order of 10(4) M(-1). Both NMR and microcalorimetric studies show that the thiourea dendrimers bind the urea containing guests with somewhat higher affinity than the corresponding urea dendrimers.  相似文献   

20.
基于柱[5]芳烃主客体包结构筑分子响应型超分子水凝胶   总被引:1,自引:0,他引:1  
主客体相互作用是在水溶液中与大环主体分子形成稳定的包结物的理想驱动力.以功能化的苯并咪唑衍生物为客体(M),水溶性柱[5]芳烃为主体构建了一种分子响应型超分子水凝胶.通过1H NMR, 2D NOESY和扫描电子显微镜(SEM)研究了水凝胶的成凝胶机理.有趣的是,主客体包结作用、柱[5]芳烃间有序的"外腔"π-π相互作用和分层堆积对于获得超分子水凝胶是必不可少的,非共价键相互作用的动态可逆性使凝胶体系对温度变化/化学刺激产生响应.此外,加入竞争性客体己二腈(ADN)/百草枯(PQ)后,柱[5]芳烃基水凝胶可转化为溶胶.因此,该超分子水凝胶可以选择性识别有机分子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号