首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
在反平面剪切载荷及侧压力共同作用下引起的裂纹及裂纹扩展导致的层间界面失效,是岩土工程层间界面及砌体结构中界面层上典型的失效方式.运用弹性力学和断裂力学的理论原理,提出了能够反映上述层间界面断裂失效问题力学特性的剪切梁模型.文中采用具有应力软化特性的“粘性裂纹”(内聚力裂纹)模型来表述层间裂纹前方损伤过程区的本构行为.对通过粘性层结合在一起的两个弹性板,在反平面剪切载荷及侧压力共同作用下的力学行为作了解析分析计算,研究了层间界面裂纹扩展规律.  相似文献   

2.
在反平面剪切载荷及侧压力共同作用下引起的裂纹及裂纹扩展导致的层间界面失效,是岩土工程层间界面及砌体结构中界面层上典型的失效方式。运用弹性力学和断裂力学的理论原理,提出了能够反映上述层间界面断裂失效问题力学特性的剪切梁模型。中采用具有应力软化特性的“粘性裂纹”(内聚力裂纹)模型档表述层间裂纹前方损伤过程区的本构行为。对通过粘性层结合在一起的两个弹性板,在反平面剪切载荷及侧压力共同作用下的力学行为作了解析分析计算,研究了层间界面裂纹扩展规律。  相似文献   

3.
利用纳米云纹法这一新技术测量了Si单晶中裂尖在纳观尺度下的变形场,观察到了著名的Peierls型位错的存在,并得到了准解理微裂纹裂尖的纳观应变场, 证实在裂尖前方10 nm之外,应变分布与线弹性断裂力学预测相吻合.裂尖的微观破坏过程可概括为:发射少量位错后裂纹发生解理破坏,并以阶梯方式向前扩展.  相似文献   

4.
本文运用有限元方法结合动态光弹性分析,对动态应力强度因子的计算进行了分析研究.作者在钱伟长教授[1]的基础上,将动态裂尖的奇异性分析解引入有限元计算;并以动态光弹性分析所得的裂纹扩展长度与时间的关系曲线作为定解补充条件,据此建立了有效模拟裂纹扩展的数值模型.通过具体算例证明,本文的方法取得了与实验结果相吻合的效果.  相似文献   

5.
根据内聚裂纹模型,含裂纹的弹性体在裂纹尖端附近存在一内聚区,内聚区断裂参数表达是其核心研究内容.该文假定弹性平板直线裂纹尖端存在一带状内聚区,并由一条虚拟线裂纹代替,其张开位移与内聚力存在确定的非线性函数关系.以Ⅰ型边裂纹为例,导出了满足虚拟裂纹条件的解析解;在此基础上给出了物理裂纹尖端扩展的能量释放率Ga、内聚裂纹尖端扩展的能量释放率Gb的计算公式;讨论了Gb,J积分和断裂能GF之间的关系;从理论上证明了临界能量释放率Gbc就是断裂能GF,Gbc可以作为含内聚区材料裂纹失稳扩展的断裂参数.提出的方法适用于所有含Ⅰ、Ⅱ、Ⅲ型内聚裂纹的弹性体.  相似文献   

6.
采用弹牯塑性力学模型,对弹粘塑性材料中Ⅲ型动态扩展裂纹尖端场进行了渐近分析.在线性硬化条件下,裂纹尖端的应力和应变场具有相同的幂奇异性,奇异性指数由材料的粘性系数唯一确定.数值计算结果表明,运动参量裂纹扩展速度本身对裂尖场的分区构造影响很小.材料的硬化系数主导裂尖场的分区构造,但二次塑性区对裂尖场的影响较小.材料的粘性主导裂纹尖端应力和应变场的强度.同时对裂尖场的构造有一定影响.当裂纹扩展速度为0时,动态解退化为相应的准静态解;当硬化系数为0时,线性硬化解还原为相应的理想塑性解.  相似文献   

7.
陈昌荣 《应用数学和力学》2017,38(10):1155-1165
层状弹性材料的裂纹方向垂直于界面时,沿围绕裂尖的任意一条封闭路径Γ的J积分(JГ)由两部分组成,JГ=Jtip+Jint,这里Jtip表示裂尖产生的J积分,Jint表示Γ所包围的界面产生的J积分.裂尖产生的J积分不随Γ变化,物理含义是裂纹扩展能量释放率;界面产生的J积分随Γ变化,物理含义与裂纹扩展能量释放率无关.界面J积分的产生使JГ失去了路径无关特性,也失去了实际物理意义.为了有助于理解非均匀材料J积分的含义和局限性,分析了层状弹性材料界面J积分的产生原因和特点.由不同均匀弹性材料组成的层状材料中,应变能密度的跳跃是界面J积分产生的原因,而弹性模量和残余应力在界面处的跳跃可使应变能密度在界面处产生跳跃.层状弹性材料的界面J积分之间具有相互抵消的作用.  相似文献   

8.
采用扫描电子显微镜(SEM)和透射电镜(TEM)原位拉伸技术研究了形状记忆合金CuNiAl应力诱发马氏体相变以及它与裂纹形核、扩展的交互作用.结果表明,裂尖应力集中能诱发层错及不同形态的马氏体.在TEM中加载时,裂纹前方的马氏体能从一种形态转变为另一种形态,甚至逆变成母相.微裂纹可以在马氏体/母相界面以及两个马氏体的交汇处形核.当裂纹扩展一段距离,裂尖应力集中足够大时,可产生滑移带,这时微裂纹更容易沿滑移带形核.  相似文献   

9.
压电陶瓷板中非电渗透型反平面裂纹的电弹性场   总被引:4,自引:0,他引:4  
对受4种机电载荷的内含裂纹的压电陶瓷板的电弹性行为进行了分析。利用积分变换方法将非电渗透型反平面裂纹问题化为对偶积分方程组,求解这些方程组可以获得裂纹线上电弹性场的明显解析表达式,及裂尖处一些量的强度因子和机械应变能释放率。当板的厚度趋近于无穷大时,所得结果还原为熟知结果。  相似文献   

10.
利用内聚力模型(CZM)模拟弹粘塑性多晶体的裂纹扩展   总被引:2,自引:0,他引:2  
采用内聚力模型(CZM),模拟多晶体中起裂于晶界的二维平面应变裂纹扩展.结果表明,弹粘塑性体中,初始裂纹尖端不会最先开裂.晶体本构的率敏感指数表征了塑性变形和内聚力区耗散两种机制的相互竞争.率敏感指数越大,塑性耗散能越大,内聚力区粘着能越小,使材料的塑性变形越容易,内聚力区诱发的破坏越不易;率敏感指数越小,材料响应越接近弹塑性性质,塑性耗散能减小,粘着能增大,外力功易转化为内聚力区的粘着能,使内聚力单元更易分离.增大内聚力区结合强度或临界张开位移使晶内和晶界的三轴应力度减小,即提高内聚力区韧性也使基体材料抗孔洞损伤能力提高.  相似文献   

11.
提出了一种简单而有效的平面弹性裂纹应力强度因子的边界元计算方法.该方法由Crouch与Starfield建立的常位移不连续单元和闫相桥最近提出的裂尖位移不连续单元构成A·D2在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界.算例(如单向拉伸无限大板中心裂纹、单向拉伸无限大板中圆孔与裂纹的作用)说明平面弹性裂纹应力强度因子的边界元计算方法是非常有效的.此外,还对双轴载荷作用下有限大板中方孔分支裂纹进行了分析.这一数值结果说明平面弹性裂纹应力强度因子的边界元计算方法对有限体中复杂裂纹的有效性,可以揭示双轴载荷及裂纹体几何对应力强度因子的影响.  相似文献   

12.
从细观层次的微裂纹在银纹内扩展模型出发,结合断裂力学与断裂动力学描述了裂尖前缘银纹质断裂所引起的微裂纹扩展动力学过程.把银纹几何结构和力学参数引入到微裂纹演化方程中,得到了随时间演化的微裂纹尺寸统计分布函数,并给出了微裂纹尺寸矩生成函数与任意阶宏观损伤函数.若微裂纹之间不存在相互作用且微裂纹在材料内部随机取向时,推导出了玻璃态高聚物的断裂几率及可靠性的普遍解析表达式.当微裂纹数目较大时,得到了断裂几率的极限形式——Gumbel分布及平均断裂强度与方差.  相似文献   

13.
主要针对剪切载荷作用下,胶接材料接合区域界面裂纹尖端动态应力强度因子进行了分析,其中考虑了裂尖区域的损伤.通过积分变换,引入位错密度函数,奇异积分方程被简化为代数方程,并采用配点法求解;最后经过Laplace逆变换,得到动态应力强度因子的时间响应.Ⅱ型动应力强度因子随着黏弹性胶层的剪切松弛参量、弹性基底的剪切模量和Poisson比的增加而增大;随膨胀松弛参量的增加而减小.损伤屏蔽发生在裂纹扩展的起始阶段.裂纹尖端的奇异性指数(-0.5)是与材料参数、损伤程度和时间无关的,而振荡指数由黏弹性材料参数控制.  相似文献   

14.
线性硬化材料中稳恒扩展裂纹尖端场的粘塑性解   总被引:1,自引:0,他引:1  
采用弹粘塑性力学模型,对线性硬化材料中平面应变扩展裂纹尖端场进行了渐近分析.假设人工粘性系数与等效塑性应变率的幂次成反比,通过量级匹配表明应力和应变均具有幂奇异性,奇异性指数由粘性系数中等效塑性应变率的幂指数唯一确定.通过数值计算讨论了Ⅱ型动态扩展裂纹尖端场的分区构造随各材料参数的变化规律.结果表明裂尖场构造由硬化系数所控制而与粘性系数基本无关.弱硬化材料的二次塑性区可以忽略,而较强硬化材料的二次塑性区和二次弹性区对裂尖场均有重要影响.当裂纹扩展速度趋于零时,动态解趋于相应的准静态解;当硬化系数为零时便退化为HR(Hui-Riedel)解.  相似文献   

15.
本文通过对310不锈钢薄膜进行透射电子显微镜的原位拉伸观察,研究了韧断微裂纹的形核及向空洞的转化过程,并用细观断裂力学研究微裂纹的形核机理,结果表明,裂尖或其附近位错源发射位错后,裂尖仍有可能保持不钝化,裂尖无位错区是一个高应变的弹性区,裂尖局部区域内的应力可以达到原子键合力,从而导致一个或多个解理微裂纹优先在无位错区中形核,通过微裂纹发射位错或周围位错源的开动,微裂纹钝化成空洞,和主裂纹连接后导致塑性裂纹的“Z”字型扩展,微裂纹也可在钝化的主裂纹顶端形核,通过钝化、再形核方式导致韧断裂纹的连续扩展。  相似文献   

16.
双材料界面裂纹平面问题的半权函数法   总被引:3,自引:0,他引:3  
应用半权函数法求解双材料界面裂纹的平面问题.由平衡方程、应力应变关系、界面的连续条件以及裂纹面零应力条件推导出裂尖的位移和应力场,其特征值为lambda及其共轭.设置特征值为lambda的虚拟位移和应力场,即界面裂纹的半权函数A·D2由功的互等定理得到应力强度因子KⅠ和KⅡ以半权函数与绕裂尖围道上参考位移和应力积分关系的表达式.数值算例体现了半权函数法精度可靠、计算简便的特点.  相似文献   

17.
利用广义参数有限元法直接求解了裂纹群裂尖应力强度因子.首先根据改进的Williams级数建立典型裂尖奇异区Williams单元,然后通过分块集成形成求解域整体刚度方程,进一步利用Williams级数的待定系数直接确定各裂尖应力强度因子,最后通过算例分析研究了裂纹间距、裂纹与X轴夹角等参数对计算结果的影响.结果表明,该文方法能够有效克服断裂分析的传统有限元法的缺陷,具有更高的计算精度和效率.而且对于含有多条等长共线水平裂纹的无限大板,当相邻裂纹间距与裂纹半长之比大于9时,可忽略裂纹之间的相互影响,按照单裂纹进行计算;对于沿Y轴对称分布的偶数条等长斜裂纹的无限大板,随着裂纹与X轴夹角的增大,KⅠ逐渐减小,KⅡ先增大后减小.  相似文献   

18.
超导薄膜是一种采用化学涂层制备而成的多层薄膜结构,作为性能优越的导电功能结构材料,其载流能力与结构完整性直接相关.在超导薄膜制备过程中,超导层与金属基底之间的界面裂纹很难避免.因此,在载流运行过程中,由于外磁场的存在,这类界面裂纹的强度问题成为关键.为此,该文针对超导薄膜结构,以磁通量子穿透薄膜理论和线弹性断裂理论为基础,建立了研究超导层与基底界面裂纹强度问题的解析模型.深入分析了外加磁场作用下界面裂纹强度问题,得到了超导磁通流动对裂纹尖端应力场和能量释放率的影响.结果表明:磁通流动速度越大,界面裂纹尖端处应力越大且能量释放率越大,这将导致界面更容易发生裂纹破坏.该文所得结果有助于分析相关的界面裂纹问题.  相似文献   

19.
本文对平面应力I型裂纹问题高阶渐近场,进行了严格的数学分析.证实了二阶渐近场不是含有独立常数的高阶本征场,而必须与一阶渐近场的弹性应变项相匹配.二阶渐近场对裂纹前方的应力场的影响很小.裂纹前方应力场由HRR奇性场表征,因而J积分单参数准则可以作为平面应力问题的起裂准则.  相似文献   

20.
在复杂荷载作用下,利用分布位错技术(DDT)对半无限大平面内的分岔裂纹问题进行研究,并进行了正确性验证.根据等效应力强度因子判据,初步解释了裂纹产生分岔的原因;研究了不同埋深、荷载比值、分支长度比值、分岔角度情况下的分岔裂纹尖端的应力强度因子;同时,研究了多分支分岔裂纹,计算结果与有限元结果吻合.结果显示:埋深越深,分岔裂纹扩展越困难,当埋深为d/a=1.5时,分支裂尖应力强度因子削弱程度可达15%左右;较长分支会极大地抑制短分支的扩展,当两分支裂纹长度比达到b/c=2以上时,屏蔽效应可达50%以上;另外,分岔角度和荷载比值会改变分岔裂纹主导的扩展模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号