首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we prove the relation v(t)?u(t,x)?w(t), where u(t,x) is the solution of an impulsive parabolic equations under Neumann boundary condition ∂u(t,x)/∂ν=0, and v(t) and w(t) are solutions of two impulsive ordinary equations. We also apply these estimates to investigate the asymptotic behavior of a model in the population dynamics, and it is shown that there exists a unique solution of the model which converges to the periodic solution of an impulsive ordinary equation asymptotically.  相似文献   

2.
In this article, an iterative method for the approximate solution to one‐dimensional variable‐coefficient Burgers' equation is proposed in the reproducing kernel space W(3,2). It is proved that the approximation wn(x,t) converges to the exact solution u(x,t) for any initial function w0(x,t) ε W(3,2), and the approximate solution is the best approximation under a complete normal orthogonal system . Moreover the derivatives of wn(x,t) are also uniformly convergent to the derivatives of u(x,t).© 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

3.
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

4.
A second order explicit method is developed for the numerical solution of the initialvalue problem w′(t) ≡ dw(t)/dt = ?(w), t > 0, w(0) = W0, in which the function ?(w) = αw(1 ? w) (w ? a), with α and a real parameters, is the reaction term in a mathematical model of the conduction of electrical impulses along a nerve axon. The method is based on four first-order methods that appeared in an earlier paper by Twizell, Wang, and Price [Proc. R. Soc. (London) A 430 , 541–576 (1990)]. In addition to being chaos free and of higher order, the method is seen to converge to one of the correct steady-state solutions at w = 0 or w = 1 for any positive value of α. Convergence is monotonic or oscillatory depending on W0, α, a, and l, the parameter in the discretization of the independent variable t. The approach adopted is extended to obtain a numerical method that is second order in both space and time for solving the initial-value boundary-value problem ?u/?t = κ?2u/?x2 + αu(1 ? u)(u ? a) in which u = u(x,t). The numerical method so developed obtained the solution by solving a single linear algebraic system at each time step. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
This paper is concerned with the study of the large-time behavior of the solutions u of a class of one-dimensional reaction–diffusion equations with monostable reaction terms f, including in particular the classical Fisher-KPP nonlinearities. The nonnegative initial data u 0(x) are chiefly assumed to be exponentially bounded as x tends to + ∞ and separated away from the unstable steady state 0 as x tends to ? ∞. On the one hand, we give some conditions on u 0 which guarantee that, for some λ > 0, the quantity c λ = λ +f′(0)/λ is the asymptotic spreading speed, in the sense that lim  t→+∞ u(t, ct) = 1 (the stable steady state) if c < c λ and lim  t→+∞ u(t, ct) = 0 if c > c λ. These conditions are fulfilled in particular when u 0(xe λx is asymptotically periodic as x → + ∞. On the other hand, we also construct examples where the spreading speed is not uniquely determined. Namely, we show the existence of classes of initial conditions u 0 for which the ω-limit set of u(t, ct + x) as t tends to + ∞ is equal to the whole interval [0, 1] for all x ∈ ? and for all speeds c belonging to a given interval (γ1, γ2) with large enough γ1 < γ2 ≤ + ∞.  相似文献   

6.
We consider an inverse boundary value problem for the heat equation ? t u = div (γ? x u) in (0, T) × Ω, u = f on (0, T) × ?Ω, u| t=0 = u 0, in a bounded domain Ω ? ? n , n ≥ 2, where the heat conductivity γ(t, x) is piecewise constant and the surface of discontinuity depends on time: γ(t, x) = k 2 (x ∈ D(t)), γ(t, x) = 1 (x ∈ Ω?D(t)). Fix a direction e* ∈ 𝕊 n?1 arbitrarily. Assuming that ?D(t) is strictly convex for 0 ≤ t ≤ T, we show that k and sup {ex; x ∈ D(t)} (0 ≤ t ≤ T), in particular D(t) itself, are determined from the Dirichlet-to-Neumann map : f → ?ν u(t, x)|(0, T)×?Ω. The knowledge of the initial data u 0 is not used in the proof. If we know min0≤tT (sup xD(t) x·e*), we have the same conclusion from the local Dirichlet-to-Neumann map. Numerical examples of stationary and moving circles inside the unit disk are shown. The results have applications to nondestructive testing. Consider a physical body consisting of homogeneous material with constant heat conductivity except for a moving inclusion with different conductivity. Then the location and shape of the inclusion can be monitored from temperature and heat flux measurements performed at the boundary of the body. Such a situation appears for example in blast furnaces used in ironmaking.  相似文献   

7.
This paper gives a new existence proof for a travelling wave solution to the FitzHugh-Nagumo equations, ut = uxx +f(u)?w, w t = ? (uw). The proof uses a contraction mapping argument, and also shows that the solution (u, c, w) to the travelling wave equations, where c is the wave speed, converges as ? → 0+ to the solution to the equations having ?=0, c=0, and w=0.  相似文献   

8.
《代数通讯》2013,41(5):2053-2065
Abstract

We consider the group G of C-automorphisms of C(x, y) (resp. C[x, y]) generated by s, t such that t(x) = y, t(y) = x and s(x) = x, s(y) = ? y + u(x) where u ∈ C[x] is of degree k ≥ 2. Using Galois's theory, we show that the invariant field and the invariant algebra of G are equal to C.  相似文献   

9.
Let M be a compact Riemannian manifold. We prove existence of a global weak solution of the stochastic wave equation D t u t  = D x u x  + (X u  + λ0(u)u t  + λ1(u)u x )[Wdot] where X is a continuous vector field on M, λ0 and λ1 are continuous vector bundles homomorphisms from TM to TM, and W is a spatially homogeneous Wiener process on ? with finite spectral measure. We use recently introduced general method of constructing weak solutions of SPDEs that does not rely on any martingale representation theorem.  相似文献   

10.
Identifying sources of ground water pollution and deblurring astronomical galaxy images are two important applications generating growing interest in the numerical computation of parabolic equations backward in time. However, while backward uniqueness typically prevails in parabolic equations, the precise data needed for the existence of a particular backward solution is seldom available. This paper discusses previously unexplored non‐uniqueness issues, originating from trying to reconstruct a particular solution from imprecise data. Explicit 1D examples of linear and nonlinear parabolic equations are presented, in which there is strong computational evidence for the existence of distinct solutions wred(x,t) and wgreen(x,t), on 0 ≤ t ≤ 1. These solutions have the property that the traces wred(x,1) and wgreen(x,1) at time t = 1 are close enough to be visually indistinguishable, while the corresponding initial values wred(x,0) and wgreen(x,0) are vastly different, well‐behaved, physically plausible functions, with comparable L2 norms. This implies effective non‐uniqueness in the recovery of wred(x,0) from approximate data for wred(x,1). In all these examples, the Van Cittert iterative procedure is used as a tool to discover unsuspected, valid, additional solutions wgreen(x,0). This methodology can generate numerous other examples and indicates that multidimensional problems are likely to be a rich source of striking non‐uniqueness phenomena. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

11.
We consider the blow-up of the solution to a semilinear heat equation with nonlinear boundary condition. We establish conditions on nonlinearities sufficient to guarantee that u(x, t) exists for all time t > 0 as well as conditions on data forcing the solution u(x, t) to blow up at some finite time t*. Moreover, an upper bound for t* is derived. Under somewhat more restrictive conditions, lower bounds for t* are also derived.  相似文献   

12.
We consider the class of equations ut=f(uxx, ux, u) under the restriction that for all a,b,c. We first consider this equation over the unbounded domain ? ∞ < x < + ∞, and we show that very nearly every bounded nonmonotonic solution of the form u(t, x)=?(x?ct) is unstable to all nonnegative and all nonpositive perturbations. We then extend these results to nonmonotonic plane wave solutions u(t, x, y)=?(x?ct) of ut = F(uxx, uxy, ux, uy, u). Finally, we consider the class of equations ut=f(uxx, ux, u) over the bounded domain 0 < x < 1 with the boundary conditions u(t, x)=A at x=0 and u(t, x)=B at x=1, and we find the stability of all steady solutions u(t, x)=?(x).  相似文献   

13.
The system of equations (f (u))t − (a(u)v + b(u))x = 0 and ut − (c(u)v + d(u))x = 0, where the unknowns u and v are functions depending on , arises within the study of some physical model of the flow of miscible fluids in a porous medium. We give a definition for a weak entropy solution (u, v), inspired by the Liu condition for admissible shocks and by Krushkov entropy pairs. We then prove, in the case of a natural generalization of the Riemann problem, the existence of a weak entropy solution only depending on x/t. This property results from the proof of the existence, by passing to the limit on some approximations, of a function g such that u is the classical entropy solution of ut − ((cg + d)(u))x = 0 and simultaneously w = f (u) is the entropy solution of wt − ((ag + b)(f(−1)(w)))x = 0. We then take v = g(u), and the proof that (u, v) is a weak entropy solution of the coupled problem follows from a linear combination of the weak entropy inequalities satisfied by u and f (u). We then show the existence of an entropy weak solution for a general class of data, thanks to the convergence proof of a coupled finite volume scheme. The principle of this scheme is to compute the Godunov numerical flux with some interface functions ensuring the symmetry of the finite volume scheme with respect to both conservation equations.  相似文献   

14.
We study the initial-boundary value problem for ?t2u(t,x)+A(t)u(t,x)+B(t)?tu(t,x)=f(t,x) on [0,T]×Ω(Ω??n) with a homogeneous Dirichlet boundary condition; here A(t) denotes a family of uniformly strongly elliptic operators of order 2m, B(t) denotes a family of spatial differential operators of order less than or equal to m, and u is a scalar function. We prove the existence of a unique strong solution u. Furthermore, an energy estimate for u is given.  相似文献   

15.
We consider the Dirichlet problem for a class of quasilinear degenerate elliptic inclusions of the form ?div(𝒜(x, u, ?u)) + f(x)g(u) ∈ H(x, u, ?u), where 𝒜(x, u, ?u) is allowed to be degenerate. Without the general assumption that the multivalued nonlinearity is characterized by Clarke's generalized gradient of some locally Lipschitz functions, we prove the existence of bounded solutions in weighed Sobolev space with the superlinear growth imposed on the nonlinearity g and the multifunction H(x, u, ?u) by using the Leray-Schauder fixed point theorem. Furthermore, we investigate the existence of extremal solutions and prove that they are dense in the solutions of the original system. Subsequently, a quasilinear degenerate elliptic control problem is considered and the existence theorem based on the proven results is obtained.  相似文献   

16.
17.
We consider solutions u(t) to the 3d NLS equation i? t u + Δu + |u|2 u = 0 such that ‖xu(t)‖ L 2  = ∞ and u(t) is nonradial. Denoting by M[u] and E[u], the mass and energy, respectively, of a solution u, and by Q(x) the ground state solution to ?Q + ΔQ + |Q|2 Q = 0, we prove the following: if M[u]E[u] < M[Q]E[Q] and ‖u 0 L 2 ‖?u 0 L 2  > ‖Q L 2 ‖?Q L 2 , then either u(t) blows-up in finite positive time or u(t) exists globally for all positive time and there exists a sequence of times t n  → + ∞ such that ‖?u(t n )‖ L 2  → ∞. Similar statements hold for negative time.  相似文献   

18.
We study a formation of patterns in Burgers-type equations endowed with a bounded but nonmonotonic dissipative flux: ut + f(u)x = ± νQ(ux)x, Q(s) = s/(1 + s2). Issues of uniqueness, existence, and smoothness of a solution are addressed. Asymptotic regions of a solution are discussed; in particular, classical and nonclassical traveling waves with an embedded subshock are constructed. © 1998 John Wiley & Sons, Inc.  相似文献   

19.
In this work we study the existence of a solution for the problem ? Δ p u = f(u) + tΦ(x) + h(x), with homogeneous Dirichlet boundary conditions. Here the nonlinear term f(u) is a so-called jumping nonlinearity. In the proofs we use topological arguments and the sub-supersolutions method, together with comparison principles for the p-Laplacian.  相似文献   

20.
By using a topological approach and the relation between rotation numbers and weighted eigenvalues, we give some multiplicity results for the boundary value problem u′′ + f(t, u) = 0, u(0) = u(T) = 0, under suitable assumptions on f(t, x)/x at zero and infinity. Solutions are characterized by their nodal properties. Supported by MIUR, GNAMPA and FCT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号