首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Employing a multitude of modern solid state NMR techniques including 13C{15N}REDOR NMR, 1H–13C CP NMR, 11B MQMAS NMR spectroscopic experiments, the structural organization of Si2B2N5C4 ceramic has been studied. The experiments were executed on double isotope enriched (13C, 15N) and natural isotope abundance Si2B2N5C4 ceramics. The materials were synthesized by aminolysis and subsequent pyrolysis of intermediate pre‐ceramic polymers that were obtained from the single source precursor TSDE, 1‐(trichlorosilyl)‐1‐(dichloroboryl)ethane (Cl3Si–CH(CH3)–BCl2). The result of the 13C{15N} REDOR NMR spectroscopic experiment shows that carbon atoms are incorporated into the network by bridging to nitrogen, which already occurs during the polymerization step. Furthermore, the combined results of 11B NMR and 11B MQMAS NMR indicate that boron atoms may also be connected to carbon in addition to nitrogen.  相似文献   

2.
Organic modified siloxanes of the type RSi(OMe2)2(CH2)3C6D4(CH2)3(OMe2)2SiR [R = Me ( 4 ), R = OMe ( 5 )] were sol‐gel processed employing solvents of different polarity (MeOH and THF) to yield the corresponding inorganic‐organic hybrid polymers X4a — X5b with different physical properties. These polymers were investigated by multinuclear (2H, 13C, and 29Si) solid state and 1H suspension state NMR spectroscopy, including dynamic NMR techniques, in order to correlate the mobilities of these xerogels with physical properties, especially with the cross‐linkage.  相似文献   

3.
Pb‐containing hydroxylapatite phases synthesized under aqueous conditions were investigated by X‐ray diffraction and solid‐state nuclear magnetic resonance (NMR) techniques to determine the Pb, Ca distribution. 31P and 1H magic‐angle spinning (MAS) NMR results indicate slight shifts of the isotropic chemical shift with increased Ca content and complex lineshapes at compositions with near equal amounts of Ca and Pb. 31P{207Pb} and 1H{207Pb} rotational‐echo double resonance (REDOR) results for intermediate compositions show that resolved spectral features cannot be assigned simply in terms of local Ca, Pb configurations or coexisting phases. 207Pb MAS NMR spectra are easily obtained for these materials and contain well‐resolved resonances for crystallographically unique A1 and A2 Pb sites. Splitting of the A1 and A2 207Pb resonances for pure hydroxyl‐pyromorphite (Pb10(PO4)6(OH)2) compared to natural pyromorphite (Pb5(PO4)3Cl) suggests symmetry reduced from hexagonal. We find that 207Pb{1H} CP/MAS NMR is impractical in Pb‐rich hydroxylapatites due to fast 207Pb relaxation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The Lewis acid (C6F5)3B was reacted with ICN, NH2CN, C3N3X3 (X = H, Cl, F). The resulting Lewis acid base adducts ( 1—5 ) were fully characterized by analytic and spectroscopic methods. Additionally, the structures of the adducts 1—4 were determined by single crystal X‐ray analyses. It has been qualitatively shown, that a high field shift of the 11B as well as the 19F NMR resonances of the o‐F atoms of the C6F5‐substituents suggests a longer B—N distance.  相似文献   

5.
Synthesis and Structural Characterization of Boron Subphthalocyaninates Halosubphthalocyaninatoboron, [B(X)spc] (X = F, Cl, Br) is obtained by heating phthalonitrile with boron trihalide in quinoline (X = F) or the corresponding halobenzene, resp. [B(C6H5)spc] is prepared from phthalonitrile and tetraphenylborate or tetraphenyloboron oxide, resp. [B(OR)spc] (R = H, CH(CH3)2, C(CH3)3, C6H5) is synthesized by bromide substitution of [B(Br)spc] in pyridine/HOR. Substitution of [B(Br)spc] in carboxylic acids yields [B(OOCR)spc] (R = H, CX3 (X = H, Cl, F), CH2X (X = Cl, C6H5), C6H5). All subphthalocyaninates are characterized electrochemically and by UV‐VIS, IR/FIR, resonance Raman, and 1H/10B‐NMR spectroscopy. Typical B–X stretching vibrations are at 622 (X = Br), 950 (Cl), 1063 (F), 1096 cm–1 (OH) as well as between 1119 and 1052 cm–1 (OR) resp. 985 and 1028 cm–1 (OOCR). The difference ν(C=O)–ν(C–O) > 400 cm–1 confirms the unidentate coordination of the carboxylato ligands. According to the crystal structure analysis of [B(OH)spc], [B(OH)spc] · 2 H2O, [B(C6H5)spc], [B(OC(CH3)3)spc], [B(OOCCH3)spc] · 0.5 H2O · C2H5OH and [B(OOCCH3)spc] · 0.4 H2O · 1.1 C5H5N the spc ligand is concavely distorted. This saucer shaped conformation is independent of the acido ligands and the presence of solvate. The outermost C atomes are vertically displaced in part by more than 2 Å from the Ni plane. The B atom is in a distorted tetrahedral coordination geometry. It is displaced by ca 0.64 Å out of the Ni plane towards the acido ligand. The average B–N distance is 1.500 Å, and the B–O distances range from 1.418(5) to 1.473(2) Å.  相似文献   

6.
Complex formation between N‐butylboronic acid and D ‐(+)‐glucose, D ‐(+)‐mannose, methyl‐α‐D ‐glucopyranoside, methyl‐β‐D ‐galactopyranoside and methyl α‐D ‐mannopyranoside under neutral conditions was investigated by 1H, 13C and 11B NMR spectroscopy and gas chromatography–mass spectrometry (GC–MS) D ‐(+)‐Glucose and D ‐(+)‐mannose formed complexes where the boronates are attached to the 1,2:4,6‐ and 2,3:5,6‐positions of the furanose forms, respectively. On the other hand, the boronic acid binds to the 4,6‐positions of the two methyl derivatives of glucose and galactose. Methyl α‐D ‐mannopyranoside binds two boronates at the 2,3:4,6‐positions. 11B NMR was used to show the ring size of the complexed sugars and the boronate. GC–MS confirmed the assignments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Understanding the complex thermodynamic behavior of confined amphiphilic molecules in biological or mesoporous hosts requires detailed knowledge of the stacking structures. Here, we present detailed solid‐state NMR spectroscopic investigations on 1‐butanol molecules confined in the hydrophilic mesoporous SBA‐15 host. A range of NMR spectroscopic measurements comprising of 1H spin–lattice (T1), spin–spin (T2) relaxation, 13C cross‐polarization (CP), and 1H,1H two‐dimensional nuclear Overhauser enhancement spectroscopy (1H,1H 2D NOESY) with the magic angle spinning (MAS) technique as well as static wide‐line 2H NMR spectra have been used to investigate the dynamics and to observe the stacking structure of confined 1‐butanol in SBA‐15. The results suggest that not only the molecular reorientation but also the exchange motions of confined molecules of 1‐butanol are extremely restricted in the confined space of the SBA‐15 pores. The dynamics of the confined molecules of 1‐butanol imply that the 1H,1H 2D NOESY should be an appropriate technique to observe the stacking structure of confined amphiphilc molecules. This study is the first to observe that a significant part of confined 1‐butanol molecules are orientated as tilted bilayered structures on the surface of the host SBA‐15 pores in a time‐average state by solid‐state NMR spectroscopy with the 1H,1H 2D NOESY technique.  相似文献   

8.
Abstract

The synthesis of a series of 2-(3,5-dimethylpyrazol-1-yl)phenyl-based organoselenium compounds, (dmpzC6H4Se)2 (1), dmpzC6H4SeR (dmpz = 3,5-dimethylpyrazol-1-yl; R = (CH2)nY; Y = OH, NH2, and COOH), and dmpzC6H4SeX (X = Cl, Br, or I) is described. The compounds are characterized by IR, NMR (1H, 13C{1H}, 77Se{1H}), and mass spectral (MS) data. The molecular structures of (dmpzC6H4Se)2, dmpzC6H4SeCH2COOH, and dmpzC6H4SeCH2CH2OH have been established by X-ray crystallography. The two latter compounds are associated in the solid state through intermolecular hydrogen bonding between the OH proton and the pyrazolyl nitrogen atom of the adjacent molecule. Glutathione peroxidase (GPx) like catalytic activity of these compounds has been evaluated by using hydrogen peroxide (H2O2) as substrate and dithiothreitol (DTTred) as thiol cofactor in CD3OD, and the progress of the reaction was monitored by 1H NMR spectroscopy. All the compounds exhibited the GPx-like catalytic activity. Among these, the ones containing alkylamino groups showed the best activity.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

9.
Single‐site, well‐defined, silica‐supported tantallaaziridine intermediates [≡Si‐O‐Ta(η2‐NRCH2)(NMe2)2] [R=Me ( 2 ), Ph ( 3 )] were prepared from silica‐supported tetrakis(dimethylamido)tantalum [≡Si‐O‐Ta(NMe2)4] ( 1 ) and fully characterized by FTIR spectroscopy, elemental analysis, and 1H,13C HETCOR and DQ TQ solid‐state (SS) NMR spectroscopy. The formation mechanism, by β‐H abstraction, was investigated by SS NMR spectroscopy and supported by DFT calculations. The C?H activation of the dimethylamide ligand is favored for R=Ph. The results from catalytic testing in the hydroaminoalkylation of alkenes were consistent with the N‐alkyl aryl amine substrates being more efficient than N‐dialkyl amines.  相似文献   

10.
The individual molecules of α‐chloroalkenyl boronates include both an electrophilic C−Cl bond and a nucleophilic C−B bond, which makes them intriguing organic synthons. Reported herein is a stereodivergent synthesis of both E and Z α‐chloroalkenyl N ‐methyliminodiacetyl (MIDA) boronates through the direct chlorination of alkenyl MIDA boronates using t BuOCl and PhSeCl reagents, respectively. Both reaction processes are stereospecific and the use of sp3‐B MIDA boronate is the key contributor to the reactivity. The synthetic value of the boronate products was also demonstrated.  相似文献   

11.
It is possible that fluorous compounds could be utilized as directing forces in crystal engineering for applications in materials chemistry or catalysis. Although numerous fluorous compounds have been used for various applications, their structures in the solid state remains a lively matter for debate. The reaction of 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridine with HX (X = I or Cl) yielded new fluorous ponytailed pyridinium halide salts, namely 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium iodide, C8H9F3NO+·I, (1), and 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium chloride, C8H9F3NO+·Cl, (2), which were characterized by IR spectroscopy, multinuclei (1H, 13C and 19F) NMR spectroscopy and single‐crystal X‐ray diffraction. Structure analysis showed that there are two types of hydrogen bonds, namely N—H…X and C—H…X. The iodide anion in salt (1) is hydrogen bonded to three 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium cations in the crystal packing, while the chloride ion in salt (2) is involved in six hydrogen bonds to five 4‐[(2,2,2‐trifluoroethoxy)methyl]pyridinium cations, which is attributed to the smaller size and reduced polarizability of the chloride ion compared to the iodide ion. In the IR spectra, the pyridinium N—H stretching band for salt (1) exhibited a blue shift compared with that of salt (2).  相似文献   

12.
Low Temperature Investigation of Hydrogen Bridge Bonds in Lithium Tetrahydroxoborate by Raman Spectroscopy, X‐Ray and Neutron Diffraction (Li11B(OD)4) Low temperature Raman spectroscopic measurements on isotopically diluted Li11B(OH)4 with 8 % D and Li11B(OD)4 with 8 % H reveal four crystallographically different hydrogen bridge bonds. With decreasing temperatures beginning at ~50 K measured down to ~10 K the stretching modes of the hydroxide ions shift to higher wave numbers. For the strongest bond O–D···O the frequency shift is 16 cm?1and for the weakest 7 cm?1. For O–H···O the maximum in the frequency shift is 22 cm?1. X‐ray single crystal (LiB(OH)4) and neutron powder diffraction (Li11B(OD)4) data result in bond lengths for the four hydroxide ions in the range of 0.943 (3) Å ≤ d(O–D) ≤ 0.974 (3) Å. The value of the effect of inversion of the stretching mode frequencies seems to correlate with the strength of the hydrogen bridge bonds and is found to be different for the two isotopes H and D in this compound.  相似文献   

13.
Stability constants of boronate complexes with a highly efficient bioconjugation ligand salicylhydroxamic acid, its derivatives and some structurally related compounds were determined by potentiometric and spectroscopic titrations at variable pH allowing one to obtain detailed stability – pH profiles and to identify the optimum pH for complexation with each ligand. The N,O‐binding of salicylhydroxamic acid via condensation of boronic acid with phenolic OH and hydroxamic NH groups was established by crystal structure determination of isolated complexes with phenylboronic and 4‐nitrophenylboronic acids. Although this type of binding is impossible for N‐methylated salicylhydroxamic acid it still forms stable boronate complexes supposedly involving unusual 7‐membered –O‐B‐O‐ cycle supported by 1H NMR studies. Hydroxamic acids lacking ortho‐OH group and salicyloyl hydrazide form less stable boronate complexes, which nevertheless possess stabilities similar to those of catechole complexes and may be useful for conjugation applications. In contrast to other ligands, which form tetrahedral anionic complexes, salicylamidoxime forms tetrahedral, but neutral boronate complex with high stability in weakly acid solutions. The highest affinity in neutral and acid solutions surpassing that of salicylhydroxamic acid is observed with 2,6‐dihydroxybenzhydroxamic acid (Kobs = 5.2 × 104 at pH 7.4). Fairly stable mono‐ and bisboronate complexes are formed with 2,5‐dihydroxy‐1,4‐benzdihydroxamic acid, which also possesses intense fluorescence and may serve as a boronic acid sensor with detection limit 4 μM. Results presented in this study provide quantitative basis for rational applications of hydroxamic acid derivatives in bioconjugation and sensing.  相似文献   

14.
The coordination chemistry of the doubly base‐stabilised diborane(4), [HB(hpp)]2 (hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido‐[1,2‐a]pyrimidinate), was extended by the synthesis of new late transition‐metal complexes containing CuI and RhI fragments. A detailed experimental study was conducted and quantum‐chemical calculations on the metal–ligand bonding interactions for [HB(hpp)]2 complexes of Group 6, 9, 11 and 12 metals revealed the dominant B? H? M interactions in the case of early transition‐metal fragments, whereas the B? B? M bonding prevails in the case of the late d‐block compounds. These findings support the experimental results as reflected by the IR and NMR spectroscopic parameters of the investigated compounds. DFT calculations on [MeB(hpp)]2 and model reactions between [B2H4 ? 2NMe3] and [Rh(μ‐Cl)(C2H4)2] showed that the bicyclic guanidinate allows in principle for an oxidative addition of the B? B bond. However, the formation of σ‐complexes is thermodynamically favoured. The results point to the selective B? H or B? B bond‐activation of diborane compounds by complexation, depending on the chosen transition‐metal fragment.  相似文献   

15.
Strontium phosphate apatites containing different amounts of copper were prepared by a solid state reaction at 1100 °C or by arc melting above 1600 °C in air. The samples were characterized by X‐ray diffraction, ICP analysis, scanning electron microscopy, IR spectroscopy, MAS—1H—NMR, diffuse reflectance spectroscopy, and SQUID magnetometry. X‐ray crystal structure determination was carried out for a single crystal obtained from the melt. The compound is formulated as Sr5(PO4)3(CuO2)1/3 and has an apatite structure (space group P63/m, a = 9.7815(4)Å, c = 7.3018(4)Å, Z = 2) with linear CuO23— ions occupying hexagonal channels. For solid state synthesized samples, Rietveld refinement of powder XRD patterns was performed. The samples obtained at 1100 °C acquire the composition Sr5(PO4)3CuxOHy, with x changing from 0.01 to 0.62 and y < 1—x. The copper content can be increased to x = 0.85 by annealing in argon at 950 °C. The compounds represent a hydroxyapatite in which part of the protons is substituted by Cu+ and Cu2+ ions. The ions form linear O—Cu—O units which are progressively condensed creating the Cu—O—Cu bridges on increasing copper content. IR and NMR data testify existence of OH groups, non‐disturbed and disturbed by neighboring Cu atoms. In the electron spectra, the samples exhibit absorption bands at 7800‐7900, 14200‐14500 and 17500‐17550 cm—1, which were assigned to Cu2+ d‐electron transitions. By annealing the sample with x = 0.1 in oxygen at 800 °C copper is fully oxidized while retaining in channels in unusual for Cu2+ linear coordination.  相似文献   

16.
2D 1H,89Y heteronuclear shift correlation through scalar coupling has been applied to the chemical‐shift determination of a set of yttrium complexes with various nuclearities. This method allowed the determination of 89Y NMR data in a short period of time. Multinuclear NMR spectroscopy as function of temperature, PGSE NMR‐diffusion experiments, heteronuclear NOE measurements, and X‐ray crystallography were applied to determine the structures of [Y5(OH)5(L ‐Val)4(Ph2acac)6] ( 1 ) (Ph2acac=dibenzoylmethanide, L ‐Val=L ‐valine), [Y( 2 )(OTf)3] ( 3 ), and [Y2( 4 )(OTf)5] ( 5 ) ( 2 : [(S)P{N(Me)N?C(H)Py}3], 4 : [B{N(Me)N?C(H)Py}4]?) in solution and in the solid state. The structures found in the solid state are retained in solution, where averaged structures were observed. NMR diffusion measurements helped us to understand the nuclearity of compounds 3 and 5 in solution. 1H,19F HOESY and 19F,19F EXSY data revealed that the anions are specifically located in particular regions of space, which nicely correlated with the geometries found in the X‐ray structures.  相似文献   

17.
Ambiphilic molecules, which contain a Lewis base and Lewis acid, are of great interest based on their unique ability to activate small molecules. Phosphine boronates are one class of these substrates that have interesting catalytic activity. Direct access to these phosphine boronates is described through the iridium‐catalyzed C?H borylation of phosphines. An unconventional cationic iridium catalyst was identified as optimal for a range of phosphines, providing good yields and selectivity across a diverse class of phosphine boronates (isolated as the borane‐protected phosphine). A complimentary catalyst system (quinoline‐based silane ligand with [(COD)IrOMe]2) was optimal for biphenyl‐based phosphines. Selective polyborylation was also shown providing bis‐ and tris‐borylated phosphines. Deprotection of the phosphine boronate provided free ambiphilic phosphine boronates, which do not have detectable interactions between the phosphorus and boron atoms in solution or the solid state.  相似文献   

18.
The first structural characterization of the text‐book tetraammineberyllium(II) cation [Be(NH3)4]2+, obtained in the compounds [Be(NH3)4]2Cl4 ? 17NH3 and [Be(NH3)4]Cl2, is reported. Through NMR spectroscopic and quantum chemical studies, its hydrolysis products in liquid ammonia were identified. These are the dinuclear [Be2(μ‐OH)(NH3)6]3+ and the cyclic [Be2(μ‐OH)2(NH3)4]2+ and [Be3(μ‐OH)3(NH3)6]3+ cations. The latter species was isolated as the compound [Be3(μ‐OH)3(NH3)6]Cl3 ? 7NH3. NMR analysis of solutions of BeF2 in liquid ammonia showed that the [BeF2(NH3)2] molecule was the only dissolved species. It acts as a strong fluoride‐ion acceptor and forms the [BeF3(NH3)]? anion in the compound [N2H7][BeF3(NH3)]. The compounds presented herein were characterized by single‐crystal X‐ray structure analysis, 9Be, 17O, and 19F NMR, IR, and Raman spectroscopy, deuteration studies, and quantum chemical calculations. The extension of beryllium chemistry to the ammine system shows similarities but also decisive differences to the aquo system.  相似文献   

19.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   

20.
《Chemphyschem》2003,4(7):691-698
Several aspects of the molecular and electronic structure of biliverdin derivatives have been studied using density functional theory (DFT). The calculations have been performed for complexes of trianion (BvO2)3? and dianion [BvO(OH)]2?, derived from two tautomeric forms of biliverdin, BvO2H3 and [BvO(OH)]H2, with redox innocent metal ions: lithium(I ), zinc(II ), and gallium(III ). One‐electron‐oxidized and ‐reduced forms of each complex (cation and anion radicals) have been also considered. The molecular structures of all species investigated are characterized by a helical arrangement of tetrapyrrolic ligands with the metal ion lying in the plane formed by the two central pyrrole rings. The spin density distribution in four types of metallobiliverdin radicals—[(BvO2.)Mn+]n‐2, [{BvO(OH).}Mn+]n‐1 (cation radicals), [(BvO2.)Mn+]n‐4, [{BvO(OH).}Mn+]n‐3 (anion radicals)—has been investigated. In general, the absolute values of spin density on meso carbon atoms were larger than for the β‐carbon atoms. Sign alteration of spin density has been found for meso positions, and also for the β‐carbon atoms of at least two pyrrole rings. The calculated spin density maps accounted for the essential NMR spectroscopic features of iron biliverdin derivatives, including the considerable isotropic shifts detected for the meso resonances and shift alteration at the meso and β‐positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号