首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we analyse the catalytic boron–boron dehydrocoupling reaction that leads from the base‐stabilised diborane(6) [H2B(hpp)]2 (hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido[1,2‐a]pyrimidinate) to the base‐stabilised diborane(4) [H2B(hpp)]2. A number of potential transition‐metal precatalysts was studied, including transition‐metal complexes of the product diborane(4). The synthesis and structural characterisation of two further examples of such complexes is presented. The best results for the dehydrocoupling reactions were obtained with precatalysts of Group 9 metals in the oxidation state of +I. The active catalyst is formed in situ through a multistep process that involves reduction of the precatalyst by the substrate [H2B(hpp)]2, and mechanistic investigations indicate that both heterogeneous and (slower) homogeneous reaction pathways play a role in the dehydrocoupling reaction. In addition, hydride abstraction from [H2B(hpp)]2 and related diboranes is analysed and the possibility for subsequent deprotonation is discussed by probing the protic character of the cationic boron–hydrogen compounds with NMR spectroscopic analysis.  相似文献   

2.
The metal complexes [M{HB(hpp)}(2)(CO)(4)] (M = Cr, Mo or W) and [M(cod){HB(hpp)}(2)Cl] (M = Rh or Ir) of the doubly-base stabilized diborane(4) ligand [HB(hpp)](2) were fully characterized and their bonding nature was investigated in detail. While bonding in the group 6 complexes predominantly occurs through the hydrogen atoms, the metal-ligand interaction in the group 9 complexes can be regarded as an early stage oxidative addition of the boron-boron bond leading to diboryl compounds.  相似文献   

3.
The red‐colored tetraborane(4) [B4(hpp)4]3+. ( 3 ; hpp=1,3,4,6,7,8‐hexahydro‐2H‐pyrimido[1,2‐a]pyrimidinate) with a rhomboid B4 skeleton stabilized by four N donors, was synthesized by the reaction of the strong hydride abstraction reagent [(acridine)BCl2][AlCl4] with the electron‐rich diborane(4) [HB(hpp)]2 ( 1 ). The salt 3 [AlCl4]3 was structurally characterized and the presence of unpaired electrons proven by EPR measurements. The unprecedented radical tricationic 3 is distinguished by a high positive charge and boron atoms in a low oxidation state (less than two).  相似文献   

4.
Anionic two‐coordinate complexes of first‐row transition‐metal(I) centres are rare molecules that are expected to reveal new magnetic properties and reactivity. Recently, we demonstrated that a N(SiMe3)2? ligand set, which is unable to prevent dimerisation or extraneous ligand coordination at the +2 oxidation state of iron, was nonetheless able to stabilise anionic two‐coordinate FeI complexes even in the presence of a Lewis base. We now report analogous CrI and CoI complexes with exclusively this amido ligand and the isolation of a [MnI{N(SiMe3)2}2]22? dimer that features a Mn?Mn bond. Additionally, by increasing the steric hindrance of the ligand set, the two‐coordinate complex [MnI{N(Dipp)(SiMe3)}2]? was isolated (Dipp=2,6‐iPr2‐C6H3). Characterisation of these compounds by using X‐ray crystallography, NMR spectroscopy, and magnetic susceptibility measurements is provided along with ligand‐field analysis based on CASSCF/NEVPT2 ab initio calculations.  相似文献   

5.
FeI compounds including hydrogenases show remarkable properties and reactivities. Several iron(I) complexes have been established in stoichiometric reactions as model compounds for N2 or CO2 activation. The development of well‐defined iron(I) complexes for catalytic transformations remains a challenge. The few examples include cross‐coupling reactions, hydrogenations of terminal olefins, and azide functionalizations. Here the syntheses and properties of bimetallic complexes [MFeI(trop2dae)(solv)] (M=Na, solv=3 thf; M=Li, solv=2 Et2O; trop=5H‐dibenzo[a,d]cyclo‐hepten‐5‐yl, dae=(N‐CH2‐CH2‐N) with a d7 Fe low‐spin valence‐electron configuration are reported. Both compounds promote the dehydrogenation of N,N‐dimethylaminoborane, and the former is a precatalyst for the dehydrogenative alcoholysis of silanes. No indications for heterogeneous catalyses were found. High activities and complete conversions were observed particularly with [NaFeI(trop2dae)(thf)3].  相似文献   

6.
The analysis of 17O NMR transverse relaxation rates and EPR transverse electronic relaxation rates for aqueous solutions of the four DTPA‐like (DTPA = diethylenetriamine‐N,N,N,N″,N″‐pentaacetic acid) complexes, [Gd(DTPA‐PY)(H2O)]? (DTPA‐PY = N′‐(2‐pyridylmethyl)), [Gd(DTPA‐HP)(H2O)2]? (DTPA‐HP = N′‐(2‐hydroxypropyl)), [Gd(DTPA‐H1P)(H2O)2]? (DTPA‐H1P = N′‐(2‐hydroxy‐1‐phenylethyl)) and [Gd(DTPA‐H2P)(H2O)2] (DTPA‐H2P = N′‐(2‐hydroxy‐2‐phenylethyl)), at various temperatures allows us to understand the water exchange dynamics of these four complexes. The water‐exchange lifetime (τM) parameters for [Gd(DTPA‐PY)(H2O)]?, [Gd(DTPA‐HP)(H2O)2]?, [Gd(DTPA‐H1P)(H2O)2]? and [Gd(DTPA‐H2P)(H2O)2] are of 585, 98, 163, and 69 ns, respectively. Compared with [Gd(DTPA)(H2O)]2? (τM = 303 ns), the τM value of [Gd(DTPA‐PY)(H2O)]? is slightly higher, but the other three complexes values are significantly lower than those of [Gd(DTPA)(H2O)]2?. This difference is explained by the fact that the gadolinium(III) complexes of DTPA‐HP, DTPA‐H1P, and DTPA‐H2P have two inner‐sphere waters. The 2H longitudinal relaxation rates of the labeled diamagnetic lanthanum complex allow the calculation of its rotational correlation time (τR). The τR values calculated for DTPA‐PY, DTPA‐HP, DTPA‐H1P, and DTPA‐H2P are of 127, 110, 142 and 147 ps, respectively. These four values are higher than the value of [La(DTPA)]2? (τR = 103 ps), because the rotational correlation time is related to the magnitude of its molecular weight.  相似文献   

7.
[TcI(NO)Cl(H2L1)2]+ cations (H2L1 = 2‐(diphenylphosphanyl)aniline) are formed during reactions of H2L1 with (NBu4)[Tc(NO)Cl4(MeOH)] or (NH4)TcO4/HCl/NH2OH mixtures. Different isomers were isolated depending on the counterions and solvents used. The technetium(I) complexes cis‐NO,Cl,trans‐P,P‐[TcI(NO)Cl(H2L1)2]Cl, trans‐NO,Cl,cis‐P,P‐[TcI(NO)Cl(H2L1)2]2(TcCl6), and trans‐NO,Cl,trans‐P,P‐[TcI(NO)Cl(H2L1)2](PF6) were isolated in crystalline form and studied by spectroscopic methods and X‐ray crystallography. DFT calculations show that there are only minor energy differences between the three isomers and the formation of the individual compounds is most probably strongly influenced by interactions with solvents and counterions.  相似文献   

8.
Thermal activation of molecular oxygen is observed for the late‐transition‐metal cationic complexes [M(H)(OH)]+ with M=Fe, Co, and Ni. Most of the reactions proceed via insertion in a metal? hydride bond followed by the dissociation of the resulting metal hydroperoxide intermediate(s) upon losses of O, OH, and H2O. As indicated by labeling studies, the processes for the Ni complex are very specific such that the O‐atoms of the neutrals expelled originate almost exclusively from the substrate O2. In comparison to the [M(H)(OH)]+ cations, the ion? molecule reactions of the metal hydride systems [MH]+ (M=Fe, Co, Ni, Pd, and Pt) with dioxygen are rather inefficient, if they occur at all. However, for the solvated complexes [M(H)(H2O)]+ (M=Fe, Co, Ni), the reaction with O2 involving O? O bond activation show higher reactivity depending on the transition metal: 60% for the Ni, 16% for the Co, and only 4% for the Fe complex relative to the [Ni(H)(OH)]+/O2 couple.  相似文献   

9.
In the ion/molecule reactions of the cyclometalated platinum complexes [Pt(L? H)]+ (L=2,2′‐bipyridine (bipy), 2‐phenylpyridine (phpy), and 7,8‐benzoquinoline (bq)) with linear and branched alkanes CnH2n+2 (n=2–4), the main reaction channels correspond to the eliminations of dihydrogen and the respective alkenes in varying ratios. For all three couples [Pt(L? H)]+/C2H6, loss of C2H4 dominates clearly over H2 elimination; however, the mechanisms significantly differs for the reactions of the “rollover”‐cyclometalated bipy complex and the classically cyclometalated phpy and bq complexes. While double hydrogen‐atom transfer from C2H6 to [Pt(bipy? H)]+, followed by ring rotation, gives rise to the formation of [Pt(H)(bipy)]+, for the phpy and bq complexes [Pt(L? H)]+, the cyclometalated motif is conserved; rather, according to DFT calculations, formation of [Pt(L? H)(H2)]+ as the ionic product accounts for C2H4 liberation. In the latter process, [Pt(L? H)(H2)(C2H4)]+ (that carries H2 trans to the nitrogen atom of the heterocyclic ligand) serves, according to DFT calculation, as a precursor from which, due to the electronic peculiarities of the cyclometalated ligand, C2H4 rather than H2 is ejected. For both product‐ion types, [Pt(H)(bipy)]+ and [Pt(L? H)(H2)]+ (L=phpy, bq), H2 loss to close a catalytic dehydrogenation cycle is feasible. In the reactions of [Pt(bipy? H)]+ with the higher alkanes CnH2n+2 (n=3, 4), H2 elimination dominates over alkene formation; most probably, this observation is a consequence of the generation of allyl complexes, such as [Pt(C3H5)(bipy)]+. In the reactions of [Pt(L? H)]+ (L=phpy, bq) with propane and n‐butane, the losses of the alkenes and dihydrogen are of comparable intensities. While in the reactions of “rollover”‐cyclometalated [Pt(bipy? H)]+ with CnH2n+2 (n=2–4) less than 15 % of the generated product ions are formed by C? C bond‐cleavage processes, this value is about 60 % for the reaction with neo‐pentane. The result that C? C bond cleavage gains in importance for this substrate is a consequence of the fact that 1,2‐elimination of two hydrogen atoms is no option; this observation may suggest that in the reactions with the smaller alkanes, 1,1‐ and 1,3‐elimination pathways are only of minor importance.  相似文献   

10.
We present an investigation of isostructural complexes that feature unsupported direct bonds between a formally trivalent lanthanide ion (Dy3+) and either a first‐row (Fe) or a second‐row (Ru) transition metal (TM) ion. The sterically rigid, yet not too bulky ligand PyCp22? (PyCp22?=[2,6‐(CH2C5H3)2C5H3N]2?) facilitates the isolation and characterization of PyCp2Dy?FeCp(CO)2 ( 1 ; d(Dy–Fe)=2.884(2) Å) and PyCp2Dy?RuCp(CO)2 ( 2 ; d(Dy–Ru)=2.9508(5) Å). Computational and spectroscopic studies suggest strong TM→Dy bonding interactions. Both complexes exhibit field‐induced slow magnetic relaxation with effectively identical energy barriers to magnetization reversal. However, in going from Dy?Fe to Dy?Ru bonding, we observed faster magnetic relaxation at a given temperature and larger direct and Raman coefficients, which could be due to differences in the bonding and/or spin–phonon coupling contributions to magnetic relaxation.  相似文献   

11.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

12.
A series of heterometallic 3d–Gd3+ complexes based on a lanthanide metalloligand, [M(H2O)6][Gd(oda)3] ? 3 H2O [M=Cr3+ ( 1‐Cr )] (H2oda=2,2′‐oxydiacetic acid), [M(H2O)6][MGd(oda)3]2 ? 3 H2O [M=Mn2+ ( 2‐Mn ), Fe2+ ( 2‐Fe ) and Co2+ ( 2‐Co )], and [M3Gd2(oda)6(H2O)6] ? 12 H2O [M=Ni2+ ( 3‐Ni ), Cu2+ ( 3‐Cu ), and Zn2+ ( 3‐Zn )], are reported. Magnetic and heat‐capacity studies revealed a significant impact on the magnetocaloric effect depending on the anisotropy of the 3d transition metal ions, as confirmed by comparison of the observed maximum values of ?ΔSm between complexes 2‐Co and 1‐Cr . In these two complexes, the 3d metal ions have the same spin (S=3/2 for Co2+ and Cr3+ ions), and the theoretical calculation suggested a larger ?ΔSm value for 2‐Co (47.8 J K?1 kg?1) than 1‐Cr (37.5 J K?1 kg?1); however, the significant anisotropy of Co2+ ions in 2‐Co , which can result in smaller effective spins, gives a smaller value of ?ΔSm for 2‐Co (32.2 J K?1 kg?1) than for 1‐Cr (35.4 J K?1 kg?1) at ΔH=9 T.  相似文献   

13.
Four metal‐organic coordination polymers [Co2(L)3(nipa)2]·6H2O ( 1 ), [Cd(L)(nipa)]·3H2O ( 2 ), [Co(L) (Hoxba)2] ( 3 ) and [Ni2(L)2(oxba)2(H2O)]·1.5L·3H2O ( 4 ) were synthesized by reactions of the corresponding metal(II) salts with the rigid ligand 1,4‐bis(1H‐imidazol‐4‐yl)benzene (L) and different derivatives of 5‐nitroisophthalic acid (H2nipa) and 4,4′‐oxybis(benzoic acid) (H2oxba), respectively. The structures of the complexes were characterized by elemental analysis, FT‐IR spectroscopy and single‐crystal X‐ray diffraction. Complexes 1 and 3 have the same one‐dimensional (1D) chain while 2 is a 6‐connected twofold interpenetrating three‐dimensional (3D) network with α ‐Po 412·63 topology based on the binuclear CdII subunits. Compound 4 features a puckered two‐dimensional (2D) (4,4) network, and the large voids of the packing 2D nets have accommodated the uncoordinated L guest molecules. An abundant of N–H···O, O–H···O and C–H···O hydrogen bonding interactions exist in complexes 1–4 , which contributes to stabilize the crystal structure and extend the low‐dimensional entities into high‐dimensional frameworks. Lastly, the photoluminiscent properties of compounds 2 were also investigated.  相似文献   

14.
Six lanthanide complexes [Ln(pmc)2NO3]n [Hpmc = pyrimidine‐2‐carboxylic acid, Ln = La ( 1 ), Pr ( 2 )], [Ln(pmc)2(H2O)3]NO3 · H2O [Ln = Eu ( 3 ), Tb ( 4 ) Dy ( 5 ), Er ( 6 )] were synthesized by the reactions of lanthanide nitrate and pyrimidine‐2‐carboxylic acid in water at room temperature. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR, circular dichroism (CD) and fluorescence spectra. Structure analysis shows that complexes 1 and 2 are isostructural with P43212 space group, whereas isostructural complexes 3 – 6 belong to the P21/c space group. In complexes 1 and 2 , the central metal atoms are coordinated by nitrates and pmc, which are self‐assembled to construct a 3D porous network with 62.62.62.62.62.62 (66) topology. In complexes 3 – 6 , H2O and pmc ligands are coordinated and the complexes exhibit a one‐dimensional zigzag chain, which is further expanded into a 3D structure by hydrogen bonding. In addition, the circular dichroism of 1 and 2 proves that the two complexes are both chiral with achiral ligand of Hpmc. Luminescent measurements of compounds 3 – 5 indicate that the characteristic fluorescence of Eu3+, Tb3+, and Dy3+ are observed.  相似文献   

15.
A series of metal compounds (M = Al, Ti, W, and Zn) containing pyrrole‐imine ligands have been prepared and structurally characterized. The reactions of AlMe3 with one and three equivs of pyrrole‐imine ligand [C4H3NH‐(2‐CH=N? CH2Ph)] ( 1 ) generated aluminum compounds Al[C4H3N‐(2‐CH=N? CH2Ph)]Me2 ( 2 ) and Al[C4H3N‐(2‐CH=NCH2Ph)]3 ( 3 ), respectively, in relatively high yield. Reacting two equivs of 1 with Ti(OiPr)4, W(NHtBu)2(=NtBu)2, or ZnMe2 afforded Ti[C4H3N‐(2‐CH=NCH2Ph)]2(OiPr)2 ( 4 ), W[C4H3N‐(2‐CH=NCH2Ph)]2(=NtBu)2 ( 5 ), and Zn[C4H3N‐(2‐CH=NCH2Ph)]2 ( 6 ), respectively. All the compounds have been characterized by 1H and 13C NMR spectroscopy. Compounds 3 – 6 have also been characterized by single‐crystal X‐ray structural analysis. The biting angles of pyrrole‐imine ligand with metals decrease and their related M? Npyrrole and M? Nimine bond lengths increase in the order of 6 , 3 , 4 , and 5 .  相似文献   

16.
Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O? [Bi≡B?B≡O]? in which both boron atoms can be viewed as sp‐hybridized and the [B?BO]? fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O? and ReB2O? and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O? has a closed‐shell bent structure (Cs, 1A′) with BO? coordinated to an Ir≡B unit, (?OB)Ir≡B, whereas ReB2O? is linear (C∞v, 3Σ?) with an electron‐precise Re≡B triple bond, [Re≡B?B≡O]?. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.  相似文献   

17.
Several new two‐ligand complexes of zinc(II) with the aromatic N, N‐donor ligands 2, 2′‐bipyridine or 1, 10‐phenanthroline and one of three different α‐hydroxycarboxylates (HL′) derived of the α‐hydroxycarboxylic acids (H2L′) (2‐methyllactic, H2mL; mandelic, H2M or benzilic, H2B) were prepared. The compounds of formula [Zn(HL′)2(NN)]·nH2O (HL′ = HM, HB) were isolated as white powders and characterized by elemental analysis, IR spectroscopy and thermogravimetric analysis. The complexes of general formula [Zn(HL′)(NN)2](HL′)·nH2O (HL′ = HmL, HM) and [Zn(HB)2(NN)2], were obtained as single crystals and were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and X‐ray diffractometry. In all cases, the zinc atom is in a distorted octahedral environment. In [Zn(HL′)(NN)2](HL′)·nH2O the α‐hydroxycarboxylato ligands behave as bidentate chelating monoanion and an α‐hydroxycarboxylate as counterion is also present. In [Zn(HB)2(NN)2], the monoanionic benzilato ligand behaves as monodentate through one oxygen atom of the carboxylate function. The effect of the classical and no‐classical hydrogen bonding and of the π‐π and C‐H…π interactions in the 3D supramolecular arrangement of these molecular complexes is analyzed.  相似文献   

18.
The complexes [Ag{κ3‐S,S′,H‐H2B(mbz)2}(PR3)]x, ( 1 : x = 2, R = Ph; 2 : x = 1, R = Cy) (mbz = 2‐mercaptobenzothiazolyl) and amidine based dihydro(2‐mercaptobenzo‐thiazolyl) borates, [HN=C(Ph)–NH(R)–H2B(mbz)] ( 3 : R = 2,6‐diisopropylphenyl and 4 : R = Ph) were synthesized and characterized by various spectroscopic methods and single‐crystal X‐ray crystallography. Complex [Ag{κ3‐S,S′,H‐H2B(mbz)2}(PPh3)]2 ( 1 ) has a dimeric structure in its crystalline state, in which central silver(I) atoms adopt a distorted trigonal bipyramid arrangement. In contrast, complex [Ag{κ3‐S,S′,H‐H2B(mbz)2}(PCy3)] ( 2 ) has a monomeric structure in its crystalline state, in which the central silver(I) atoms adopt a distorted trigonal planar arrangement. Infrared spectroscopy was utilized as a tool for investigating the presence of M ··· H–B interactions. In addition, density functional theory (DFT) calculations were used to analyse the B–H ··· [M] bonding interaction in the metal borate complexes.  相似文献   

19.
Quinoline bridged imidazolium precursors 5,8‐bis(NR‐imidazolylidenylmethylene)quinoline PF6 salts [H2L](PF6)2 [R = Me ( 1a ), R = naphthylmethyl ( 1b )] were prepared by quaternization of N‐methylimidazole and N‐naphthylmethylimidazole with 5,8‐bis(bromomethyl)quinoline, respectively. Reaction of the imidazolium ligands 1a and 1b with Hg(OAc)2 and Ag2O in acetonitrile gave the macrocyclic transition metal carbene complexes [Hg2L2](PF6)4 ( 2a and 2b ) and [Ag2L2](PF6)2 ( 3a and 3b ), respectively. All the N‐heterocyclic carbene complexes were characterized in detail by NMR, ESI‐MS, and elemental analysis. Structures of complexes 2a and 3a were determined by X‐ray diffraction studies. Structural studies revealed that the coordination arrangement of the central mercury atom in complex 2a displays a tricoordinate mode and the molecular conformation results in a“closed” form with the bridging quinoline functionality in the macrocycle, whereas the silver complex 3a does not show an coordiantion between the bridging quinoline and the AgI ion, which results in an “open” conformation of the macrocycle. The HgII and AgI NHC complexes showed similar UV absorption and luminescence in acetonitrile solutions.  相似文献   

20.
Two novel As‐V‐O cluster supported transition metal complexes, [Zn(en)2][Zn(en)2(H2O)2][{Zn(en)(enMe)}As6V15O42(H2O)]·4H2O ( 1 ) and [Zn2(enMe)2(en)3][{Zn(enMe)2}As6V15O42(H2O)]·4H2O ( 2 ), have been hydrothermally synthesized. The single X‐ray diffraction studies reveal that both compounds consist of discrete noncentral polyoxoanions [{Zn(en)(enMe)}As6V15O42(H2O)]4? or [{Zn(enMe)2}As6V15O42(H2O)]4? cocrystallized with respective zinc coordination complexes. Interestingly, compounds 1 and 2 exhibit the first two polyoxovanadates containing As8V15O42‐(H2O)]6? cluster decorated by only one transition metal complex. Crystal data: 1 , monoclinic, P21/n, a = 14.9037(4) Å, b = 18.1243(5) Å, c = 27.6103(7) Å, β = 105.376(6)°, Z = 4; 2 monoclinic, P21/n, a = 14.9786(7) Å, b = 33.0534(16) Å, c = 14.9811(5) Å, Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号