首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the synthesis of amide bonds is now one of the most reliable organic reactions, functionalization of amide carbonyl groups has been a long‐standing issue due to their high stability. As an ongoing program aimed at practical transformation of amides, we developed a direct nucleophilic addition to N‐alkoxyamides to access multisubstituted amines. The reaction enabled installation of two different functional groups to amide carbonyl groups in one pot. The N‐alkoxy group played important roles in this reaction. First, it removed the requirement for an extra preactivation step prior to nucleophilic addition to activate inert amide carbonyl groups. Second, the N‐alkoxy group formed a five‐membered chelated complex after the first nucleophilic addition, resulting in suppression of an extra addition of the first nucleophile. While diisobutylaluminum hydride (DIBAL‐H) and organolithium reagents were suitable as the first nucleophile, allylation, cyanation, and vinylation were possible in the second addition including inter‐ and intramolecular reactions. The yields were generally high, even in the synthesis of sterically hindered α‐trisubstituted amines. The reaction exhibited wide substrate scope, including acyclic amides, five‐ and six‐membered lactams, and macrolactams.  相似文献   

2.
Addition of organotrimethylsilane reagents to chiral Ntert‐butanesulfinyl imines can be achieved in good yields and with excellent diastereoselectivities by employing TMSO?/Bu4N+ as a Lewis base activator in THF. A variety of aliphatic, aromatic, heteroaromatic and organometallic chiral imines were utilised as electrophiles for the synthesis of enantioenriched Ntert‐butanesulfinyl amides. Remarkably, the same sets of reaction conditions could be used with a highly diverse range of bench‐stable organotrimethylsilane reagents, which highlights the generality and robustness of this methodology.  相似文献   

3.
An efficient CpxRhIII‐catalyzed enantioselective alkenyl C?H functionalization/[4+1] annulation of acryl amides and allenes is reported. The described transformation provides straightforward access to enantioenriched α,β‐unsaturated‐γ‐lactams bearing a quaternary stereocenter. The reaction operates under mild conditions, displays a broad functional‐group tolerance, and provides 2H‐pyrrol‐2‐ones with excellent selectivity of up to 97:3 er. Such scaffolds are frequently found in natural products and synthetic bioactive compounds and are of significant synthetic value. It is noteworthy that the allene serves as a one‐carbon unit in the [4+1]‐annulation.  相似文献   

4.
A mild method for the direct C?H/N?H coupling between γ‐lactams and anilines through electrochemical oxidation has been developed. The protocol proceeded smoothly without metal catalysts at room temperature to afford γ‐substituted γlactams in good yields. It has been revealed that the quasi‐divided cell which provided high current density on the anode was crucial for this reaction.  相似文献   

5.
Herein, we describe the first structural characterization of N‐alkylated twisted amides prepared directly by N‐alkylation of the corresponding non‐planar lactams. This study provides the first experimental evidence that N‐alkylation results in a dramatic increase of non‐planarity around the amide N?C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O‐Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N?C(O) moiety of N‐alkylated amides, indicating the lack of nN to π*C=O conjugation. Most crucially, we demonstrate that N‐alkylation activates the otherwise unreactive amide bond towards σ N?C cleavage by switchable coordination.  相似文献   

6.
Direct functionalization of alkenes and direct transformation of carboxamides are two exciting areas that have attracted considerable attention in recent years. We report herein that secondary amides, the least reactive derivatives of carbonyl compounds, upon activated with triflic anhydride, can serve as effective hydroacylating reagents in partner with alkenes to yield ketones at ambient temperature. The method was applied to the one‐step synthesis of racemic dihydro‐ar‐turmerone. In this method, alkenes serve as surrogates of organometallic reagents, which allows the orthogonal chemoselective reactions. The ready availability of many olefins such as camphene and norbornene permits one‐step ketone synthesis that would require several steps by conventional methods.  相似文献   

7.
The transamination of 6‐chloro‐2‐(3‐chlorophenyl)‐1H‐benz[de ]isoquinoline‐1,3‐(2H )‐dione with primary alkylamines under pseudo‐first‐order conditions is shown to be unimolecular in both reagents as well as unimolecular in methanol (in methanol solution). The reaction is subject to both general acid and general base catalysis. A termolecular, solvated transition state model and a putative model for the early steps of laser tissue welding with aminonaphthalimide dyes are proposed.  相似文献   

8.
The first total synthesis of the α‐oxo amide‐based natural product, N‐(3‐guanidinopropyl)‐2‐(4‐hydroxyphenyl)‐2‐oxoacetamide ( 3 ), isolated from aqueous extracts of hydroid Campanularia sp., has been achieved. The α‐oxo amide 12 , prepared via the oxidative amidation of 1‐[4‐(benzyloxy)phenyl]‐2,2‐dibromoethanone ( 9a ) with 4‐{[(tert‐butyl)(dimethyl)silyl]oxy}butan‐1‐amine ( 10a ), has been used as the key intermediate in the total synthesis of 3 as HBr salt. On the way, an expeditious total synthesis of polyandrocarpamide C ( 2c ), isolated from marine ascidian Polyandrocarpa sp., was carried out in four steps.  相似文献   

9.
A series of N‐aryl 2‐alkenamides were produced efficiently by treating N‐aryl 3‐(phenylsulfonyl)‐propanamides with potassium tert‐butoxide in THF at 0°C. With out isolation, it was further treated with an additional equivalent of potassium tert‐butoxide and allyl bromide to give N‐allyl N‐aryl 2‐alkenamides in one pot in good yields. Followed by a ring‐closing metathesis reaction, these N‐allyl N‐aryl 2‐alkenamides were respectively converted into corresponding N‐aryl α,β‐unsaturated γ‐lactams in moderate yields.  相似文献   

10.
A novel tert‐butyl‐containing dianhydride was prepared from readily available reagents. It was reacted with various aromatic diamines to prepare a set of polyimides containing tert‐butyl pendent groups. The resulting polyimides exhibit high molecular weights (high inherent viscosity), and a combination of desirable properties, such as good solubility in aprotic amide solvents and cresols, high glass transition temperatures (up to 320 °C), high thermal resistance, film‐forming capability and good mechanical properties.

  相似文献   


11.
The activation of carbon–carbon σ bonds is a complementary method to access uncommon and difficult‐to‐prepare organometallic species. Herein, we describe the activation of tert‐cyclobutanols through an enantioselective insertion of a chiral rhodium(I) complex into the C? C σ bond of the cyclobutane, forming a quaternary stereogenic center and an alkyl‐rhodium functionality that initiates ring‐closure reactions. This technology provides access to a variety of substituted cyclohexane derivatives with quaternary stereogenic centers. The formation of different product families can be controlled by the employed set of reaction conditions and additives. In general, high yields and excellent enantioselectivities of up to 99 % ee are obtained.  相似文献   

12.
The reactivity of 3‐hydroxy‐4‐(1,2‐dihydroxyethyl)‐β‐lactams with regard to the oxidant sodium periodate was evaluated, unexpectedly resulting in the exclusive formation of new 2‐hydroxy‐1,4‐oxazin‐3‐ones through a C3? C4 bond cleavage of the intermediate 4‐formyl‐3‐hydroxy‐β‐lactams followed by a ring expansion. This peculiar transformation stands in sharp contrast with the known NaIO4‐mediated oxidation of 3‐alkoxy‐ and 3‐phenoxy‐4‐(1,2‐dihydroxyethyl)‐β‐lactams, which exclusively leads to the corresponding 4‐formyl‐β‐lactams without a subsequent ring enlargement. In addition, this new class of functionalized oxazin‐3‐ones was further evaluated for its potential use as building blocks in the synthesis of a variety of differently substituted oxazin‐3‐ones, morpholin‐3‐ones and pyrazinones. Furthermore, additional insights into the mechanism and the factors governing this new ring‐expansion reaction were provided by means of density functional theory calculations.  相似文献   

13.
As potential inhibitors of penicillin‐binding proteins (PBPs), we focused our research on the synthesis of non‐traditional 1,3‐bridged β‐lactams embedded into macrocycles. We synthesized 12‐ to 22‐membered bicyclic β‐lactams by the ring‐closing metathesis (RCM) of bis‐ω‐alkenyl‐3(S)‐aminoazetidinone precursors. The reactivity of 1,3‐bridged β‐lactams was estimated by the determination of the energy barrier of a concerted nucleophilic attack and lactam ring‐opening process by using ab initio calculations. The results predicted that 16‐membered cycles should be more reactive. Biochemical evaluations against R39 DD‐peptidase and two resistant PBPs, namely, PBP2a and PBP5, revealed the inhibition effect of compound 4d , which featured a 16‐membered bridge and the N‐tert‐butyloxycarbonyl chain at the C3 position of the β‐lactam ring. Surprisingly, the corresponding bicycle, 12d , with the PhOCH2CO side chain at C3 was inactive. Reaction models of the R39 active site gave a new insight into the geometric requirements of the conformation of potential ligands and their steric hindrance; this could help in the design of new compounds.  相似文献   

14.
The copper‐free Sonogashira coupling between N‐substituted cis‐ 2‐iodocyclopropanecarboxamides and terminal aryl‐, heteroaryl‐alkynes or enynes, followed by 5‐exo‐dig cyclization of the nitrogen amide onto the carbon–carbon triple bond, provides a remarkably efficient access to a variety of substituted 4‐methylene‐3‐azabicyclo[3.1.0]hexan‐2‐ones in excellent yields. Protonation of these latter enamides generates bicyclic N‐acyliminium ions that can be involved in Pictet–Spengler cyclizations leading to new 3‐azabicyclo[3.1.0]hexan‐2‐ones, possessing a quaternary stereocenter at C4, with high diastereoselectivities. This strategy constitutes an attractive complementary alternative to the classical route that relies on the addition of organometallic reagents to cyclopropyl imides.  相似文献   

15.
A new method for the synthesis of α‐branched amines by reductive functionalization of tertiary carboxamides and lactams is described. The process relies on the efficient and controlled reduction of tertiary amides by a sodium hydride/sodium iodide composite, in situ treatment of the resulting anionic hemiaminal with trimethylsilyl chloride and subsequent coupling with nucleophilic reagents including Grignard reagents and tetrabutylammonium cyanide. The new method exhibits broad functional‐group compatibility, operates under transition‐metal‐free reaction conditions, and is suitable for various synthetic applications on both sub‐millimole and on multigram scales.  相似文献   

16.
The molecules of N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐2‐chloro‐N‐(4‐methoxybenzyl)acetamide, C23H26ClN3O2, are linked into a chain of edge‐fused centrosymmetric rings by a combination of one C—H...O hydrogen bond and one C—H...π(arene) hydrogen bond. In N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐2‐chloro‐N‐(4‐chlorobenzyl)acetamide, C22H23Cl2N3O, a combination of one C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds, which utilize different aryl rings as the acceptors, link the molecules into sheets. The molecules of S‐[N‐(3‐tert‐butyl‐1‐phenyl‐1H‐pyrazol‐5‐yl)‐N‐(4‐methylbenzyl)carbamoyl]methyl O‐ethyl carbonodithioate, C26H31N3O2S2, are also linked into sheets, now by a combination of two C—H...O hydrogen bonds, both of which utilize the amide O atom as the acceptor, and two C—H...π(arene) hydrogen bonds, which utilize different aryl groups as the acceptors.  相似文献   

17.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

18.
The reaction of racemic α‐keto β‐lactams 5a – 5c with the commercially available chiral compound trans‐4‐hydroxy‐L ‐proline ( 6 ) in the presence of a catalytic amount of Bi(NO3)3?5 H2O in EtOH gave a diastereoisomer mixture of β‐lactams with a pyrrole ring at C(3) ( 7 to 12 ). This is the first enantioselective synthesis of optically active β‐lactams (=azetidin‐2‐ones) that possess a pyrrolyl residue at C(3), in a single step.  相似文献   

19.
α‐Oxygen‐functionalized amides found particular utility as enolate surrogates for direct aldol couplings with α‐fluorinated ketones in a catalytic manner. Because of the likely involvement of open transition states, both syn‐ and anti‐aldol adducts can be accessed with high enantioselectivity by judicious choice of the chiral ligands. A broad variety of alkoxy substituents on the amides and aryl and fluoroalkyl groups on the ketone were tolerated, and the corresponding substrates delivered a range of enantioenriched fluorinated 1,2‐dihydroxycarboxylic acid derivatives with divergent diastereoselectivity depending on the ligand used. The amide moiety of the aldol adduct was transformed into a variety of functional groups without protection of the tertiary alcohol, showcasing the synthetic utility of the present asymmetric aldol process.  相似文献   

20.
A series of optically active N‐protected α‐aminoketones were synthesized via the Grignard reaction of the Weinreb amides of the Ntert‐butoxycarbonyl amino acids. Reduction of the α‐aminoketones by sodium borohydride resulted in the corresponding 1,2‐amino alcohols. © 2003 Wiley Periodicals, Inc. Heteroatom Chem 14:603–606, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10195  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号