首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Protein foams play an important role in both food and biotechnological processes. A sound understanding of foaming properties of proteins relevant to such processes is useful e.g. to allow adequate control of unwanted foams and appropriate choice of protein-physical system when foams of certain characteristics are required. In general, measurements of changes in foam volume (volumetric method) are used for foam characterisation. However, recently there has been increased interest in the use of measurement methods based on conductivity and capacitance. Simple relative techniques based on electrical conductivity measurements provide information on both foamability and foam stability. A multi point conductivity measurement system has been designed and used for characterisation of model protein foams (0.1 and 1.0 mg ml−1 Bovine serum albumin, BSA). The solution of BSA was sparged with nitrogen or carbon dioxide gas at constant flow rate (90 cm3 min−1) via a stainless steel sinter (0.5 or 2.0 μm in pore size). A comparison of foaming properties determined by volumetric and conductimetric techniques is provided. Both methods show that more stable foams are obtained for solutions at higher BSA concentrations. At all BSA concentrations, higher foamability and stability are achieved with a smaller sinter pore size. When nitrogen rather than carbon dioxide is used as a dispersed phase, higher foamability and foam stability are obtained. The conductivity measurements indicate that foamability is dependent on gas type, whereas, volumetric measurements do not show such differences.  相似文献   

2.
Polyorganosiloxane foam(SIF) nanocomposites reinforced with vinyl-modified montmorillonite(Mt-V) and hydrox-yl-modified montmorillonite(Mt-OH) were prepared through cross-linking and foaming. The effects of modified Mt on the density, pore morphology, and thermal and compressive properties of the prepared polyorganosiloxane foams were investi-gated. The structure of the polyorganosiloxane foam was studied by solid-state nuclear magnetic resonance analysis. Clay dispersion in polyorganosiloxane nanocomposites and pore morphology were investigated by X-ray diffraction and scan-ning electron microscopy analyses. The thermal and mechanical properties of the prepared materials were also evaluated by differential scanning calorimeter, thermogravimetric analysis, thermal diffusivity and compressive strength. The results show that Mt-V exhibits improved cell structure, thermal insulation, and crush compressive than Mt-OH. The addition of modified Mt reduces the density, cell size, and thermal conductivity but increases the high-temperature resistance and com-pressive strength of the nanocomposite. The amount of the residues of SIF/Mt-OH nanocomposites increases by 9% com-pared with that of the pure SIF. Furthermore, SIF/Mt-V decreases the thermal conductivity to 0.014 W/mK and the cell size to 98 μm. Those properties give the material potential application value in the aerospace and construction industry.  相似文献   

3.
In this work, dodecylamine‐modified graphene nanosheets (DA‐GNSs) and γ‐aminopropyl‐triethoxysilane‐treated multiwalled carbon nanotubes (f‐MWCNTs) are employed to prepare cyanate ester (CE) thermally conductive composites. By adding 5 wt% DA‐GNSs or f‐MWCNTs to the CE resin, the thermal conductivities of the composites became 3.2 and 2.5 times that of the CE resin, respectively. To further improve the thermal conductivity, a mixture of the two fillers was utilized. A remarkable synergetic effect between the DA‐GNSs and f‐MWCNTs on improving the thermal conductivity of CE resin composites was demonstrated. The composite containing 3 wt% hybrid filler exhibited a 185% increase in thermal conductivity compared with pure CE resin, whereas composites with individual DA‐GNSs and f‐MWCNTs exhibited increases of 158 and 108%, respectively. Moreover, the composite with hybrid filler retained high electrical resistivity. Scanning electron microscopy images of the composite morphologies showed that the modified graphene nanosheets (GNSs) and multiwalled carbon nanotubes (MWCNTs) were uniformly dispersed in the CE matrix, and a number of junction points among MWCNTs and between MWCNTs and GNSs formed in the composites with hybrid fillers. Generally, we can conclude that these composites filled with hybrid fillers may be promising materials of further improving the thermal conductivity of CE composites. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The thermal conductivity and the cellular structure as well as the matrix polymer morphology of a collection of chemically crosslinked low‐density closed cell polyolefin foams, manufactured by a high‐pressure nitrogen gas solution process, have been studied. With the aid of a useful theoretical model, the relative contribution of each heat‐transfer mechanism (conduction through the gas and solid phases and thermal radiation) has been evaluated. The thermal radiation can be calculated by using a theoretical model, which takes into account the dependence of this heat‐transfer mechanism with cell size, foam thickness, chemical composition, and matrix polymer morphology. A simple equation, which can be used to predict the thermal conductivity of a given material, is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 993–1004, 2000  相似文献   

5.
The relation between microstructure and electrical properties of polymer reinforced by electrically conducting nanofibers is investigated using a RC type simulation. Real and imaginary parts of the conductivity vs. the frequency and the filler fraction are presented both for two‐ and three‐dimensional systems. In the latter case, resistor and capacitor values are deduced from a random microstructure and the measured macroscopic properties of each component. These results are compared with experimental data obtained on a nanocomposite material composed of electrically conductive fillers dispersed in an insulating matrix. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 805–814, 1999  相似文献   

6.
A chemically modified tung oil was used as the main polyol component in the formulation of viscoelastic (low resilience) polyurethane foams. Rice Husk Ash (RHA), a residue from the rice process industry, was chosen to be incorporated as rigid filler in these materials because of its high silica content. Water was used as blowing agent in order to increase the green nature of the reinforced foams. Physico-chemical and thermal properties of the neat and reinforced foams were measured and analyzed. RHA addition leads to noticeable changes in several properties, mainly thermal conductivity, density and foam morphology, even at the low filler content used in this work. Although the thermal stability was almost unaffected by ash content, a stabilizing effect of the inorganic filler was identified, since the residual char was higher than predicted from theoretical calculations.  相似文献   

7.
The thermal and electrical conductivity and mechanical properties of polyetherimide (PEI) containing either alkyl‐aminated (enGO) or phenyl‐aminated graphene (pnGO) oxides were studied. A solution casting method was used to prepare functionalized graphene oxide/PEI composites with different filler contents. The introduction of functionalized graphene oxide to the PEI matrix improved the thermal conductivity, electrical conductivity, and mechanical properties. The thermal conductivities of the enGO 3 wt%/PEI and pnGO 3 wt%/PEI composites were 0.324 W/mK and 0.329 W/mK, respectively, due to the high thermal conductivity of the graphene‐based materials and the strong interface adhesion due to the filler surface treatment between the fillers and the matrix. The electrical conductivities of the functionalized graphene oxide/PEI composites were larger than that of PEI, but the electrical conductivity values were generally low, which is consistent with the magnitude of the insulator. The strong interfacial adhesion between the fillers and the matrix led to improved mechanical properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The optimization of polymer barrier properties is currently of crucial importance for a wide range of applications from packaging to building or even energy applications. To meet the requirements of these applications, polymer matrices are often combined with impermeable (nano) fillers. Different nanofiller natures, shapes, and contents have been experimentally used and a large range of barrier materials has been obtained. In the meantime, several numerical approaches have been developed to model gas diffusion properties of nanocomposite materials. However, these approaches often considered bidimensional systems. The aim of this work is to develop 3D Finite Element Model which would be used to predict gas barrier properties of nanocomposites for disk‐shaped nanofillers. The model thus obtained is valid in a wide range of fillers volume fraction values as well as aspect ratios, which makes it possible to go from diluted regimes to semidiluted or even concentrated ones. Furthermore, an analytical equation which describes gas diffusion through nanocomposites films has been built and validated with our finite element modeling model. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 51–61  相似文献   

9.
The improvement of thermal insulating performance of polyurethane rigid foams is a crucial task for their use. In this work, the effect of graphene on these properties has been studied by preparing and testing unfilled, 0.3 and 0.5 wt% graphene‐filled polyurethane foams. It was found that graphene is able, at very low content (0.3 wt%), to reduce the radiative contribution of the initial thermal conductivity by both decreasing the cell size and increasing the extinction coefficient. Due to the low graphene contents considered, no concerns about the solid‐phase contribution of thermal conductivity arise. Polyurethane–graphene nanocomposite foams showed also slower aging rate with respect to unfilled foams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.

Foams are mainly composed of dispersed gas trapped in a liquid or solid phase making them lightweight and thermally insulating materials. Additionally, they are applicable for large surfaces, which makes them attractive for thermal insulation. State-of-the-art thermally insulating foams are made of synthetic polymeric materials such as polystyrene. This work focuses on generating foam from surfactants and renewable lignocellulosic materials for thermally insulating stealth material. The effect of two surfactants (sodium dodecyl sulphate (SDS) and polysorbate (T80)), two cellulosic materials (bleached pulp and nanocellulose), and lignin on the foaming and stability of foam was investigated using experimental design and response surface methodology. The volume-optimized foams determined using experimental design were further studied with optical microscopy and infrared imaging. The results of experimental design, bubble structure of foams, and observations of their thermal conductivity showed that bleached pulp foam made using SDS as surfactant produced the highest foam volume, best stability, and good thermal insulation. Lignin did not improve the foaming or thermal insulation properties of the foam, but it was found to improve the structural stability of foam and brought natural brown color to the foam. Both wet and dry lignocellulosic foams provided thermal insulation comparable to dry polystyrene foam.

Graphical abstract
  相似文献   

11.
This current study aimed to enhance the thermal conductivity of thin film composites without compromising other polymer qualities. The effect of adding high thermal conductivity nanoparticles on the thermal properties and moisture absorption of thin film epoxy composites was investigated. Three types of fillers in nanosize with high thermal conductivity properties, boron nitride (BN), synthetic diamond (SD), and silicon nitride (Si3N4) were studied. SN was later used as an abbreviation for Si3N4. The contents of fillers varied between 0 and 2 vol.%. An epoxy nanocomposite solution filled with high thermal conductivity fillers was spun at 1500–2000 rpm to produce thin film 40–60 µm thick. The effects of the fillers on thermal properties and moisture absorption were studied. The addition of 2 vol.% SD produced the largest improvement with 78% increment in thermal conductivity compared with the unfilled epoxy. SD‐filled epoxy thin film also showed good thermal stability with the lowest coefficients of thermal expansion, 19 and 124 ppm, before and after Tg, respectively, which are much lower compared with SN‐filled and BN‐filled epoxy thin film composites. However the SD‐filled epoxy film has its drawback as it absorbs more moisture compared with BN‐filled and SN‐filled epoxy film. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Nanocomposite hydrogels based on carbon nanotubes (CNTs) are known to possess remarkable stiffness, electrical, and thermal conductivity. However, they often make use of CNTs as fillers in covalently cross‐linked hydrogel networks or involve direct cross‐linking between CNTs and polymer chains, limiting processability properties. Herein, nanocomposite hydrogels are developed, in which CNTs are fillers in a physically cross‐linked hydrogel. Supramolecular nanocomposites are prepared at various CNT concentrations, ranging from 0.5 to 6 wt%. Incorporation of 3 wt% of CNTs leads to an increase of the material's toughness by over 80%, and it enhances electrical conductivity by 358%, compared to CNT‐free hydrogel. Meanwhile, the nanocomposite hydrogels maintain thixotropy and processability, typical of the parent hydrogel. The study also demonstrates that these materials display remarkable cytocompatibility and support cell growth and proliferation, while preserving their functional activities. These supramolecular nanocomposite hydrogels are therefore promising candidates for biomedical applications, in which both toughness and electrical conductivity are important parameters.  相似文献   

13.

In this research, the effect of cerium dioxide (CeO2) nanoparticles on electrical properties of poly(butyl methacrylate) (PBMA) has been investigated. Polymer nanocomposites reinforced with variable contents of CeO2 nanoparticles (3, 5, 7 and 10 wt%) were fabricated by an in situ polymerization method. The formation of nanocomposites was analyzed by FTIR, XRD, SEM and TEM analysis. Also, the AC and DC conductivities of CeO2 nanoparticles-reinforced PBMA were systematically studied with respect to different loadings of CeO2 fillers. The FTIR, XRD and morphological studies revealed that the nanoparticles were well inserted and uniformly dispersed into the macromolecular chain of PBMA. The AC conductivity of PBMA/CeO2 composite increases not only with the loading of nanoparticles but also with the temperature of the system. The activation energy determined from AC electrical conductivity was found to decrease with the frequency and temperature. DC conductivity of the nanocomposites was increased with the insertion of nanoparticles into PBMA. The DC conductivity of all the composites was greater than pure PBMA. The applicability of different theoretical models such as Scarisbrick, Bueche and McCullough equations was compared with the experimentally determined DC conductivity of PBMA/CeO2 nanocomposites. These models fail to explain the conductivity of polymer composite in the entire loading of fillers. Hence, a new theoretical model is proposed in this study and it shows good agreement with the experimentally observed conductivity values.

  相似文献   

14.
Shape memory polymer (SMP) foams have been developed for use in neurovascular occlusion applications. These materials are predominantly polyurethanes that are known for their biocompatibility and tunable properties. However, these polymers inherently lack X‐ray visibility, which is a significant challenge for their use as implantable materials. Herein, low density, highly porous shape memory polyurethane foams were developed with tungsten nanoparticles dispersed into the foam matrix, at increasing concentrations, to serve as a radiopaque agent. Utilizing X‐ray fluoroscopy sufficient visibility of the foams at small geometries was observed. Thermal characterization of the foams indicated altered thermal response and delayed foam actuation with increasing nanoparticle loading (because of restricted network mobility). Mechanical testing indicated decreased toughness and strength for higher loading because of disruption of the SMP matrix. Overall, filler addition imparted x‐ray visibility to the SMP foams and allowed for tuned control of the transition temperature and actuation kinetics for the material. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Quasi-static and dynamic compressive tests are undertaken on the polyurethane (PU) foam and fumed silica reinforced polyurethane (PU/SiO2) foam experimentally. The ceramic microspheres with varying mass fractions are adopted to mix with the PU/SiO2 foam to fabricate the composite particle-reinforced foams. The effects of strain rate and particle mass fraction are discussed to identify and quantify the compressive response, energy-absorbing characteristic, and the associated mechanisms of the composite foams. The results show the initial collapse strength and plateau stress of the foams are improved significantly by reinforcing with the ceramic microsphere within 60 wt% at quasi-static compression. The rate sensitivity is observed on all the foams, but in different patterns due to the influence of ceramic microsphere. The compressive response affected by ceramic microsphere can be attributed to the particle cluster effect and stress wave propagation. Together with the deformation, the compressive characteristic experiences non-monotonic change from the low to high strain rates. The specific energy absorption (SEA) of the foam with 41 wt% ceramic microsphere show the largest magnitude at quasi-static compression. With the increasing strain rate, the ceramic reinforced foam exhibits superior energy absorption efficiency at high strain rates to that of the pure foams.  相似文献   

16.
Flexible polyurethane (PU) nanocomposite foams were synthesized using organically modified montmorillonite clay (Cloisite 30B). The dispersion of organoclay was considered both in the isocyanate and polyol matrixes. Silicate layers of organoclay can be exfoliated in PU matrix by use of two steps mixing process. The presence of clay increased the cell density and reduced the cell size compared to the conventional PU foam. Clay dispersion was investigated by X-ray diffraction (XRD). The morphology and properties of PU nanocomposite foams were also studied. Generally, mechanical properties by addition of clay were improved. Foams in which clay was firstly dispersed in the isocyanate, showed better dispersion due to affinity of OH group on the clay surface to react with NCO groups. Better properties have been achieved with these nanofoams.  相似文献   

17.
This paper presents a model for evaluation of effective thermal conductivity for the composites with carbon nanotubes (CNT) having log-normal function of distribution of CNT, with direct effect over depolarization factor. The CNT are considered having cylindrical shape with L/d ratio very high. The model parameters are calculated in function of the data from literature. The influence of volume fraction of reinforced materials, of the aspect ratio of the particles included and of the ratio of the two thermal conductivities is presented.  相似文献   

18.
Free-rising silicone foams were made with loading fractions of up to 0.25 wt.-% functionalized graphene sheets (FGS) and up to 1.0 wt.-% carbon nanotubes (CNTs) using hydrogen as blowing agent. Scanning electron microscopy of the samples revealed an open cellular structure and a homogeneous dispersion of both types of nanofillers. The incorporation of nanofiller affected the foaming process and thus the final foam density and cellular structure. Transmission electron microscopy revealed the formation of a CNT network throughout the sample, while FGS presented an exfoliated and intercalated dispersion. The thermal stability of the samples was drastically affected by the presence of both nanofillers. Both nanofillers showed a positive effect on the compressive response of the foams. However, the nanocomposite foams were found to decrease the acoustic absorption with nanofiller content probably due to the variable foam structure and improved stiffness.  相似文献   

19.
A regular Kelvin foam model was used to predict the linear thermal expansion coefficient and bulk modulus of crosslinked, closed‐cell, low‐density polyethylene (LDPE) foams from the polymer and gas properties. The materials used for the experimental measurements were crosslinked, had a uniform cell size, and were nearly isotropic. Young's modulus of biaxially oriented polyethylene was used for modeling the cell faces. The model underestimated the foam linear thermal expansion coefficient because it assumed that the cell faces were flat. However, scanning electron microscopy showed that some cell faces were crumpled as a result of foam processing. The measured bulk modulus, which was considerably smaller than the theoretical value, was used to estimate the linear thermal expansion coefficient of the LDPE foams. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3741–3749, 2004  相似文献   

20.
《先进技术聚合物》2018,29(7):1879-1888
This work reports the synthesis of rigid polyurethane (PU) foams modified by disilanolisobutyl polyhedral oligomeric silsesquioxane (DSIPOSS). This open‐cage nanostructure silsesquioxane has 2 hydroxyl groups and therefore can be chemically built directly in the PU backbone to form hybrid polyurethane‐POSS foam. Synthesis procedure using polymeric 4,4′‐diphenylmethane diisocyanate, polyetherol, and DSIPOSS has been elaborated, and the influence of POSS on the cell structure, closed cell content, apparent density, thermal conductivity, and compression strength of the rigid polyurethane composites has been evaluated. The hybrid composite foams containing 1.5 and 2.0 wt% DSIPOSS showed a reduced number of cells and an increased average area of foam cells in comparison with the unmodified PU, while the addition of 0.5wt% of DSIPOSS causes an increase in the number of cells of the foam as compared with the reference and thus a reduction in the average area of cells. X‐ray microtomography provided data on the porous structure of polyurethane hybrid materials, including reduction of the pore surface area. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy analysis revealed a good homogenization of DSIPOSS in polyurethane matrix. Thermogravimetric analysis results have shown that incorporation of POSS nanoparticles into PU foam does not significantly change the degradation process. The compressive strength of PUF‐POSS hybrids in the direction parallel and perpendicular to the direction of foam rise is greater than the strength of the reference foam already for the lowest DSIPOSS content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号