首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A generic modular synthetic strategy for the fabrication of a series of binary‐ternary group II‐VI and group I‐III‐VI coupled semiconductor nano‐heterostructures is reported. Using Ag2Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe‐AgInSe2, CdSe‐AgGaSe2, ZnSe‐AgInSe2, and ZnSe‐AgGaSe2. Among these, dispersive type‐II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi‐conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated.  相似文献   

2.
Ag2Se quantum dots (QDs) with near‐infrared (NIR) fluorescence have been widely utilized in NIR fluorescence imaging in vivo because of their narrow bulk band gap and excellent biocompatibility. However, most of synthesis methods for Ag2Se QDs are expensive and the reactants are toxic. Herein, a new protein‐templated biomimetic synthesis approach is proposed for the preparation of Ag2Se QDs by employing bovine serum albumin (BSA) as a template and dispersant. The BSA‐templated Ag2Se QDs (Ag2Se@BSA QDs) showed NIR fluorescence with high fluorescence quantum yield (≈21.2 %), excellent biocompatibility and good dispersibility in different media. Moreover, the obtained Ag2Se@BSA QDs exhibited remarkable photothermal conversion (≈27.8 %), which could be used in photothermal therapy. As a model application in biomedicine, the Ag2Se@BSA QDs were used as “gatekeepers” to cap mesoporous silica nanoparticles (MSNs) by means of electrostatic interaction. By taking the advantages of NIR fluorescence and photothermal property of Ag2Se@BSA QDs, the obtained MSN‐DOX‐Ag2Se nanoparticles (MDA NPs) were employed as a nanoplatform for combined chemo‐photothermal therapy. Compared with free DOX and MDA NPs without NIR laser, the laser‐treated MDA NPs exhibited lower cell viability in vitro, implying that Ag2Se@BSA QDs are highly promising photothermal agents and the MDA NPs are potential carriers for chemo–photothermal therapy.  相似文献   

3.
Described herein is a novel one‐pot aqueous synthesis of ZnSe nanocrystals has featuring the utilization of Na2SeO3 and Zn(AC)2×2H2O as Se and Zn source, glutathione (GSH) as stabilizing agent and reducing agent. By this approach, the UV‐blue ZnSe QDs with quantum yield (QYs) up to 19% have been synthesized with a molar ratio of Se/Zn/GSH at 1:4:8.5 under aqueous conditions at 110 °C. XRD and TEM show the ZnSe QDs are zinc cubic structure particles with an average diameter of 3–5 nm.  相似文献   

4.
In this work, we develop a low‐temperature, facile solution reaction route for the fabrication of quantum‐dot‐sensitized solar cells (QDSSCs) containing Ag2S‐ZnO nanowires (NWs), simultaneously ensuring low manufacturing costs and environmental safety. For comparison, a CdS‐ZnO NW photoanode was also prepared using the layer‐by‐layer growth method. Ultraviolet photoelectron spectroscopy analysis revealed type‐II band alignments for the band structures of both photoanodes which facilitate electron transfer/collection. Compared to CdS‐ZnO QDSSCs, Ag2S‐ZnO QDSSCs exhibit a considerably higher short‐circuit current density (Jsc) and a strongly enhanced light‐harvesting efficiency, but lower open‐circuit voltages (Voc), resulting in almost the same power‐conversion efficiency of 1.2 %. Through this work, we demonstrate Ag2S as an efficient quantum‐dot‐sensitizing material that has the potential to replace Cd‐based sensitizers for eco‐friendly applications.  相似文献   

5.
ZnSe nanoparticles were prepared from ZnCl2, Se and KBH4 in the presence of cetyltrimethyl ammonium bromide (CTAB) through a room temperature solid phase process. The products were characterized with x‐ray diffraction (XRD), transmission electron microscope (TEM), and energy dispersive analysis of x‐ray (EDAX). The results show that the cubic zincblende phase ZnSe nanoparticles can be obtained using this simple method. The size of nanoparticles was evaluated to be from 8 to 30 nm.  相似文献   

6.
Small Se nanoparticles with a diameter of ≈20 nm were generated by the reduction of selenium chloride with NaBH4 at ?10 °C. The reaction with Ag at 60 °C yielded stable Ag2Se nanoparticles, which subsequently were transformed into M–Se nanoparticles (M=Cd, Zn, Pb) through cation exchange reactions with corresponding ions. The reaction with Pt formed Pt layers that were evenly coated on the surface of the Se nanoparticles, and the dissolution of the Se cores with hydrazine generated uniform Pt hollow nanoparticles. The reaction with Au generated tiny Au clusters on the Se surface, and eventually formed acorn‐shaped Au–Se nanoparticles through heat treatment. These results indicate that small Se nanoparticles with diameters of ≈20 nm can be used as a versatile platform for the synthesis of metal selenide and metal–selenium hybrid nanoparticles with complex structures.  相似文献   

7.
Photoinduced syntheses offer significant advantages over conventional thermal strategies, including improved control over reaction kinetics and low synthesis temperatures, affording nanoparticles with nontrivial and thermodynamically unstable structures. However, the photoinduced syntheses of non‐metallic nanocrystalline products (such as metal sulfides) have not yet been reported. Herein, we demonstrate the first photoinduced synthesis of ultrafine (sub‐2 nm) Ag2S quantum dots (QDs) from Ag nanoparticles at 10 °C. By thorough investigation of the mechanism for the transformation, a fundamental link was established between the intrinsic structures of the molecular intermediates and the final Ag2S products. Our results confirm the viability of low‐temperature photochemical approaches in metal sulfide synthesis, and demonstrate a new rule which could be followed in it.  相似文献   

8.
Bioinspired unidirectional porous materials have emerged as a unique class of scaffolds for the fabrication of macroscopic nanomaterial assemblies. However, these scaffolds usually serve simply as mechanical carriers to support various building blocks. Here, we report that the unidirectional silk fibroin scaffold can not only act as a carrier, but also serve as a controllable multiscale reactor to achieve the in situ synthesis of a Ag3PO4 nanowire network anchored to ordered channels. Both the silk fibroin matrix and the interface play important roles in the nucleation and growth of the Ag3PO4 nanowires. This unidirectional composite scaffold can be used for efficient water disinfection. Furthermore, the facile chemical transformation of Ag3PO4 in the composite scaffold into Ag2S provided an analogous unidirectional composite silk scaffold that displays both efficient solar water evaporation effect and antibacterial activity. It is expected that this method can be extended to fabricate a series of silk‐based unidirectional composite scaffolds with varying functionalities.  相似文献   

9.
Kailasa SK  Wu HF 《Talanta》2010,83(2):527-534
We report the first use of functionalized Ag2Se nanoparticles (NPs) as effective extracting probes for NPs-based liquid-phase microextraction (NPs-LPME) to analyze hydrophobic peptides and proteins from biological samples (urine and plasma) and soybean in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Surface modified functional groups such as octadecanethiol (ODT) and 11-mercaptoundecanoic acid (MUA) on Ag2Se NPs were found to play an important role for efficient extraction of peptides and proteins from test samples through hydrophobic interactions. The peptides can be efficiently extracted using functionalized Ag2Se NPs as extracting probes in the presence of high concentration of matrix interferences such as 4 M urea, 0.5% Triton X-100 and 3% NaCl. Ag2Se@ODT NPs have shown better extraction efficiency and detection sensitivity for peptides than Ag2Se@MUA NPs, bare Ag2Se NPs and conventional MALDI-MS. The LODs are 20-68 nM for valinomycin and 100-180 nM for gramicidin D using Ag2Se@ODT NPs-LPME in the MALDI-MS. The current approach is highly sensitive and the target analytes can be effectively isolated without sample loss and efficiently analyzed in MALDI-MS.  相似文献   

10.
邹隽  徐耀  候博  吴东  孙予罕 《化学学报》2007,65(8):768-772
在碱性水醇溶液中, 硝酸银与用3-(2-氨乙基氨丙基)三甲氧基硅烷[N-(2-aminoethyl)-3-aminopropyl-trimethoxy- silane, AMPTS]表面修饰后的二氧化硅胶体颗粒相互作用, 发现所生成的氧化银纳米颗粒可以在二氧化硅颗粒表面自组装为氧化银纳米线. 通过调变反应物中Ag/Si摩尔比, 可对氧化银纳米线的形貌进行调控. 在较小的Ag/Si摩尔比下, 可以得到结构均匀、直径约为50 nm、长度几十微米的氧化银纳米线. 随Ag/Si摩尔比增大, 得到的氧化银纳米线逐渐变短变粗, 且结构变得不均匀. 高分辨透射电镜(HRTEM)显示, 所有的氧化银纳米线均由直径10~20 nm的氧化银颗粒定向堆积而得. 利用透射电镜(TEM)对氧化银纳米线的形成过程进行了观察, 并对氧化银颗粒形成及组装机理进行了探讨.  相似文献   

11.
Activatable theranostic systems show potential for improved tumor diagnosis and therapy owing to high detection specificities, effective ablation, and minimal side‐effects. Herein, a tumor microenvironment (TME)‐activated NIR‐II nanotheranostic system (FEAD1) for precise diagnosis and treatment of peritoneal metastases is presented. FEAD1 was fabricated by self‐assembling the peptide Fmoc‐His, mercaptopropionic‐functionalized Ag2S quantum dots (MPA‐Ag2S QDs), the chemodrug doxorubicin (DOX), and NIR absorber A1094 into nanoparticles. We show that in healthy tissue, FEAD1 exists in an NIR‐II fluorescence “off” state, because of Ag2S QDs‐A1094 interactions, while DOX remains in stealth mode. Upon delivery of FEAD1 to the tumor, the acidic TME triggers its disassembly through breakage of the Fmoc‐His metal coordination and DOX hydrophobic interactions. Release of A1094 switches on Ag2S fluorescence, illuminating the tumor, accompanied by burst release of DOX within the tumor tissue, thereby achieving precise tumor theranostics. This TME‐activated theranostic strategy holds great promise for future clinical applications.  相似文献   

12.
The electrical explosion of wires was used to prepare titanium dioxide nanopowders alloyed with silver nanoparticles. The photoelectrochemical properties and electronic structure of these materials were studied. The quantum yield for the photoelectrochemical current η and the flat band potential E fb for TiO2/Ag films were found to be proportional to the content of the Ag0 phase on the electrode surface.  相似文献   

13.
A mild three‐step solution strategy is developed to prepare Ag? MS (M=Zn, Cd) nanoheterostructures composed of MS nanorods with silver tips. First, Ag2S? MS heterostructures are synthesized by following a solution–liquid–solid mechanism with Ag2S nanoparticles as catalysts, then the Ag2S sections of the heterostructures are converted into silver nanoparticles by selective extraction of sulfur. Notably, for the prepared Ag? CdS heterostructures, the localized surface plasmon resonance of silver remarkably intensifies the photoluminescence of CdS by enhancing the excitation light absorption, which is beneficial for potential applications of CdS nanoparticles in the fields of biolabeling, light‐emitting diodes, and so forth. The strategy reported herein would be useful for designing and fabricating other metal–semiconductor hybrid nanostructures with desirable performances.  相似文献   

14.
A one‐step method was developed for preparing Ag2S quantum dots (QDs) using a common protein [bovine serum albumin (BSA)] to entrap QDs precursors (BSA–Ag+). Fluorescence (FL) and ultraviolet spectra showed that the molar ratio of Ag+/BSA, temperature, and pH are the crucial factors for the quality of QDs. The QDs absorption wavelength and emission wavelength were about 340 and 450 nm. The average QDs particle size was estimated to be less than 5 nm, determined by transmission electron microscopy. The X‐ray power diffraction and XPS results showed that the synthesized product was indeed monoclinic Ag2S. With Fourier transform infrared spectra and thermogravimetry analysis, there might be conjugated bonds between Ag2S QDs and –OH, –NH, and –SH groups in BSA. In addition, FL spectra suggest that the designed QDs can produce static quenching with BSA and the Stern–Volmer quenching constant (Ksv) was calculated as 2.145 × 104. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
We present a ternary semiconductor nanoparticle sensitizer – AgSbS2 – for solar cells. AgSbS2 nanoparticles were grown using a two-stage successive ionic layer adsorption and reaction process. First, Ag2S nanoparticles were grown on the surface of a nanoporous TiO2 electrode. Secondly, a Sb–S film was coated on top of the Ag2S. The double-layered structure was transformed into AgSbS2 nanoparticles ~ 40 nm in diameter, after post-deposition heating at 350 °C. The AgSbS2-sensitized TiO2 electrodes were fabricated into liquid-junction solar cells. The best cell yielded a power conversion efficiency of 0.34% at 1 sun and 0.42% at 0.1 sun. The external quantum efficiency (EQE) spectrum covered the range of 380–680 nm with a maximal EQE of 10.5% at λ = 470 nm. The method can be applied to grow other systems of ternary semiconductor nanoparticles for solar absorbers.  相似文献   

16.
Atomically precise polyoxometalate–Ag2S core–shell nanoparticles were generated in a top‐down approach under solvothermal conditions and structurally confirmed by X‐ray single‐crystal diffraction as an interesting core–shell structure comprising an in situ generated Mo6O228? polyoxometalate core and a mango‐like Ag58S38 shell. This result demonstrates the possibility to integrate polyoxometalate and Ag2S nanoparticles into a core–shell heteronanostructure with precisely controlled atomical compositions of both core and shell.  相似文献   

17.
Ag2Se (naumannite) was investigated by means of temperature dependent synchrotron powder diffraction and DTA. Upon heating in air the known 1st order phase transition from orthorhombic low‐temperature Ag2Se (P212121, Z = 4) to cubic ion conducting high‐temperature Ag2Se (Im3m, Z = 2) was observed at approx. 140 °C. Upon cooling a small hysteresis was detected (TPU = 120 °C). It was found that when heated in air Ag2Se segregates elemental selenium. After cooling to ambient temperature the resulting low‐temperature Ag2Se can no longer be described in the known structural model with harmonic terms, the use of anharmonic terms is probably necessary. The phase transition and the segregation of selenium are accompanied by an increased crystallinity of the sample, as the halfwidths of the reflections become significantly smaller. Approaching the phase transition the lattice parameters of orthorhombic Ag2Se show a distinct anisotropic behaviour: b and c show a positive and a a negative thermal expansion. When heated in argon the segregation of selenium is not observed.  相似文献   

18.
Silver sulfide nanoparticles were found to catalyze the reduction of Ag+ ions by sodium sulfite and hydroquinone. The change in the absorption spectrum of the reaction mixtures was studied. New bands were found to arise at 403, 415, and 426 nm depending on the reaction conditions. These bands were identified as plasmon bands of metallic silver nanoparticles. The kinetics of this process was determined under various conditions and Ag2S nanoparticles were found to be a highly active catalyst.  相似文献   

19.
The hydrothermal synthesis of nanocrystalline ZnSe has been studied by in situ X-ray powder diffraction using synchrotron radiation. The formation of ZnSe was studied using the following starting mixtures: Zn+Se+H2O (route A) and ZnCl2+Se+H2O+Na2SO3 (route B). The route A experiment showed that Zn powder starts reacting with water at 134 °C giving ZnO and H2 followed by the formation of ZnSe which takes place in temperature range from 167 to 195 °C. The route B experiment shows a considerably more complex reaction path with several intermediate phases and in this case the formation of ZnSe starts at 141 °C and ZnSe and Se were the only crystalline phases observed at the end of the experiment where the temperature was 195 °C. The sizes of the nanocrystalline particles were determined to 18 and 9 nm in the route A and B experiments, respectively. Nanocrystalline ZnSe was also synthesized ex situ using the route A and B methods and characterized by conventional X-ray powder diffraction and transmission electron microscopy. An average crystalline domain size of ca. 8 nm was determined by X-ray powder diffraction in fair agreement with TEM images, which showed larger aggregates of nanoparticles having approximate diameters of 10 nm. Furthermore, a method for purification of the ZnSe nanoparticles was developed and the prepared particles showed signs of anisotropic size broadening of the diffraction peaks.  相似文献   

20.
Silver sulfide nanoparticles dispersed in sol-gel derived hydroxypropyl cellulose (HPC)-silica films have been successfully synthesized using H2S gas diffusion method. This is the first attempt to produce silver sulfide nanoparticles using this technique. Ag2S nanoparticles are generated through reaction of H2S gas with AgNO3 precursor dissolved in the HPC-silica matrix. Transmission electron microscope (TEM) and atomic force microscope (AFM) analysis reveal nanoparticles size distribution from 2.5 nm to 56 nm for H2S gas exposed sample. The surface chemistry of Ag2S nanoparticles and sol-gel derived HPC-silica matrix is confirmed by X-ray photoelectron spectroscopy (XPS). The negative shifts in the core-level XPS Ag (3d) binding energy of Ag2S nanoparticles are attributed to Ag : S surface atomic ratio exhibited by these nanoparticles with varying processing conditions. Following processing and characterization, suitability of the present method to produce silver sulfide ion-selective electrode is demonstrated by depositing Ag2S nanoparticles on a graphite rod. The high reponse function of the electrode is due to the presence of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号