首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
In the last decade, the main efforts have focused on the preparation of different sized binary II–VI group semiconductor nanocrystals to obtain different color-emitting luminescence. However, the tuning of physical and chemical properties by changing the particle size could cause problems in many applications, in particular if unstable small particles are used. Recent advances have led to the exploration of tunable optical properties by changing their constituent stoichiometries in ternary alloy nanocrystals. High-quality Zn x Cd1?x Se alloy nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals or embryonic CdSe nuclei. With increasing Zn content, a composition-tunable emission across the whole visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. High-quality alloy Zn x Cd1?x S nanocrystals have been obtained by the conucleation and co-growth of the constituents through the reaction of a mixture of CdO- and ZnO-oleic acid complexes with sulfur at elevated temperatures. The obtained Zn x Cd1?x S alloy nanocrystals possess superior optical properties with photoluminescence quantum yields of 25–50%, especially the extremely narrow emission spectral width (fwhm=14 nm).  相似文献   

2.
A facile method for the low‐cost and large‐scale production of ultralong Ag2S (or Ag2Se)? ZnSe quantum wires has been developed. ZnSe quantum wires (diameter≈4 nm) with high uniformity in their crystal structure and diameter can be synthesized by using a catalyst‐assisted growth approach with Ag2S nanoparticles as a catalyst. The influence of the growth temperature, time, and type of catalytic particle on the morphology of the ZnSe quantum wires was systematically explored. Besides Ag2S, Ag2Se nanoparticles can also be adopted as the catalyst for the growth of ZnSe wires. This method can also be applied to the fabrication of uniform CdSe nanorods. This method is convenient for the controllable fabrication of metal selenides and is of importance for exploring fundamental nanoscale semiconductor physics, as well as for affording technological devices with optimized characteristics.  相似文献   

3.
KHALIL M. M. H.  MASHALY M. M.   《中国化学》2008,26(9):1669-1677
A new series of binary mononuclear complexes were prepared from the reaction of the hydrazone ligand, 2-carboxyphenylhydrazo-benzoylacetone (H2L), with the metal ions, Cd(II), Cu(II), Ni(II), Co(II), Th(IV) and UO2(VI). The binary Cu(II) complex of H2L was reacted with the ligands 1,10-phenanthroline or 2-aminopyridine to form mixed-ligand complexes. The binary complexes of Cu(II) and Ni(II) are suggested to have octahedral configurations. The Cd(II) and Co(II) complexes are suggested to have tetrahedral and/or square-planar geometries, respectively. The Th(IV) and UO2(VI) complexes are suggested to have octahedral and dodecahedral geometries, respectively. The mixed-ligand complexes have octahedral configurations. The structures of all complexes and the corresponding thermal products were elucidated by elemental analyses, conductance, IR and electronic absorption spectra, magnetic moments, 1H NMR and TG-DSC measurements as well as by mass spectroscopy. The ligand and some of the metal complexes were found to activate the enzyme pectinlyase.  相似文献   

4.
Abstract

Equilibrium constants involving the ternary mixed ligand iron(II) complex [Fe(TPTZ)(terpy)]2+, determined spectrophotometrically at 23° and μ=0.5 M, are reported. Acidity constants of the protonated ligands and formation constants of the binary iron(II) complexes [Fe(TPTZ)2]2+ and [Fe(terpy)2]2+, measured as an adjunct to determining the ternary complex constants, are also reported. The results are of interest in elucidating mixed-ligand complexation effects as well as in confirming or correcting previously reported equilibrium constants of the binary complexes.  相似文献   

5.
The molecules of racemic 3‐benzoylmethyl‐3‐hydroxyindolin‐2‐one, C16H13NO3, (I), are linked by a combination of N—H...O and O—H...O hydrogen bonds into a chain of centrosymmetric edge‐fused R22(10) and R44(12) rings. Five monosubstituted analogues of (I), namely racemic 3‐hydroxy‐3‐[(4‐methylbenzoyl)methyl]indolin‐2‐one, C17H15NO3, (II), racemic 3‐[(4‐fluorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12FNO3, (III), racemic 3‐[(4‐chlorobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12ClNO3, (IV), racemic 3‐[(4‐bromobenzoyl)methyl]‐3‐hydroxyindolin‐2‐one, C16H12BrNO3, (V), and racemic 3‐hydroxy‐3‐[(4‐nitrobenzoyl)methyl]indolin‐2‐one, C16H12N2O5, (VI), are isomorphous in space group P. In each of compounds (II)–(VI), a combination of N—H...O and O—H...O hydrogen bonds generates a chain of centrosymmetric edge‐fused R22(8) and R22(10) rings, and these chains are linked into sheets by an aromatic π–π stacking interaction. No two of the structures of (II)–(VI) exhibit the same combination of weak hydrogen bonds of C—H...O and C—H...π(arene) types. The molecules of racemic 3‐hydroxy‐3‐(2‐thienylcarbonylmethyl)indolin‐2‐one, C14H11NO3S, (VII), form hydrogen‐bonded chains very similar to those in (II)–(VI), but here the sheet formation depends upon a weak π–π stacking interaction between thienyl rings. Comparisons are drawn between the crystal structures of compounds (I)–(VII) and those of some recently reported analogues having no aromatic group in the side chain.  相似文献   

6.
Selecting specific 2D building blocks and specific layering sequences of van der Waals heterostructures should allow the formation of new materials with designed properties for specific applications. Unfortunately, the synthetic ability to prepare such structures at will, especially in a manner that can be manufactured, does not exist. Herein, we report the targeted synthesis of new metal–semiconductor heterostructures using the modulated elemental‐reactant technique to nucleate specific 2D building blocks, control their thickness, and avoid epitaxial structures with long‐range order. The building blocks, VSe2 and GeSe2, have different crystal structures, which inhibits cation intermixing. The precise control of this approach enabled us to synthesize heterostructures containing GeSe2 monolayers alternating with VSe2 structural units with specific sequences. The transport properties systematically change with nanoarchitecture and a charge‐density wave‐like transition is observed.  相似文献   

7.
S. Koch  G. Ackermann  G. Winkler 《Talanta》1979,26(9):821-826
Two model systems and three analytical procedures based on them have been investigated analytically and characterized statistically with the aim of evaluating the application of ternary complexes in photometry. From measurements on the systems Ti(IV), Tiron (TiR8?3, procedure I), Ti(IV), Tiron, EDTA (TiR8?3, procedure II), Ti(IV), Tiron, EDTA [TiO(HY)R5?, procedure III], the molar absorptivities, standard deviations, coefficients of variation, calibration data, limits of detection and determination have been calculated, and the possible interferences of 45 ions have been examined. Procedure III is shown to be the least sensitive of the three, but to offer a higher selectivity towards titanium in the presence of Cr(III), Cu(II), Fe(III), Mn(II), Mo(VI), Ni(II), U(VI) and W(VI). The reasons for this are discussed, and some suggestions are offered concerning the intended application of ternary complexes.  相似文献   

8.
Two‐dimensional (2D) copper‐based ternary and quaternary semiconductors are promising building blocks for the construction of efficient solution‐processed photovoltaic devices at low cost. However, the facile synthesis of such 2D nanoplates with well‐defined shape and uniform size remains a challenge. Reported herein is a universal template‐mediated method for preparing copper‐based ternary and quaternary chalcogenide nanoplates, that is, CuInS2, CuInxGa1?xS2, and Cu2ZnSnS4, by using a pre‐synthesized CuS nanoplate as the starting template. The various synthesized nanoplates are monophasic with uniform thickness and lateral size. As a proof of concept, the Cu2ZnSnS4 nanoplates were immobilized on a Mo/glass substrate and used as semiconductor photoelectrode, thus showing stable photoelectrochemical response. The method is general and provides future opportunities for fabrication of cost‐effective photovoltaic devices based on 2D semiconductors.  相似文献   

9.
10.
Models for estimation of the first (K1), second (K2), and overall stability constant (β2) of copper(II) chelates with naturally occurring amino acids, based on the valence connectivity index of the 3rd order (3 χ v), were improved by introduction of a square term and a new graph representation for mono‐complexes (MLcor). The models gave SE=0.07, 0.05–0.07 and 0.05–0.08 for lg K1, lg K2 and lg β2 constants, respectively; models that encompass both binary and ternary biscomplexes included indicator variable. We also validated our models on the test set which included two mono‐, two binary and two ternary Cu(II) chelates with α‐aminobutanoic acid and α‐aminopentanoic acid, not included into the calibration. The absolute differences between experimental and predicted stability constants were in the range of 0.01–0.16.  相似文献   

11.
Two‐dimensional (2D) copper‐based ternary and quaternary semiconductors are promising building blocks for the construction of efficient solution‐processed photovoltaic devices at low cost. However, the facile synthesis of such 2D nanoplates with well‐defined shape and uniform size remains a challenge. Reported herein is a universal template‐mediated method for preparing copper‐based ternary and quaternary chalcogenide nanoplates, that is, CuInS2, CuInxGa1−xS2, and Cu2ZnSnS4, by using a pre‐synthesized CuS nanoplate as the starting template. The various synthesized nanoplates are monophasic with uniform thickness and lateral size. As a proof of concept, the Cu2ZnSnS4 nanoplates were immobilized on a Mo/glass substrate and used as semiconductor photoelectrode, thus showing stable photoelectrochemical response. The method is general and provides future opportunities for fabrication of cost‐effective photovoltaic devices based on 2D semiconductors.  相似文献   

12.
Ab initio MP2/aug′‐cc‐pVTZ calculations are used to investigate the binary complexes H2XP:HF, the ternary complexes H2XP:(FH)2, and the quaternary complexes H2XP:(FH)3, for X=CH3, OH, H, CCH, F, Cl, NC, and CN. Hydrogen‐bonded (HB) binary complexes are formed between all H2XP molecules and FH, but only H2FP, H2ClP, and H2(NC)P form pnicogen‐bonded (ZB) complexes with FH. Ternary complexes with (FH)2 are stabilized by F?H???P and F?H???F hydrogen bonds and F???P pnicogen bonds, except for H2(CH3)P:(FH)2 and H3P:(FH)2, which do not have pnicogen bonds. All quaternary complexes H2XP:(FH)3 are stabilized by both F?H???P and F?H???F hydrogen bonds and P???F pnicogen bonds. Thus, (FH)2 with two exceptions, and (FH)3 can bridge the σ‐hole and the lone pair at P in these complexes. The binding energies of H2XP:(FH)3 complexes are significantly greater than the binding energies of H2XP:(FH)2 complexes, and nonadditivities are synergistic in both series. Charge transfer occurs across all intermolecular bonds from the lone‐pair donor atom to an antibonding σ* orbital of the acceptor molecule, and stabilizes these complexes. Charge‐transfer energies across the pnicogen bond correlate with the intermolecular P?F distance, while charge‐transfer energies across F?H???P and F?H???F hydrogen bonds correlate with the distance between the lone‐pair donor atom and the hydrogen‐bonded H atom. In binary and quaternary complexes, charge transfer energies also correlate with the distance between the electron‐donor atom and the hydrogen‐bonded F atom. EOM‐CCSD spin‐spin coupling constants 2hJ(F–P) across F?H???P hydrogen bonds, and 1pJ(P–F) across pnicogen bonds in binary, ternary, and quaternary complexes exhibit strong correlations with the corresponding intermolecular distances. Hydrogen bonds are better transmitters of F–P coupling data than pnicogen bonds, despite the longer F???P distances in F?H???P hydrogen bonds compared to P???F pnicogen bonds. There is a correlation between the two bond coupling constants 2hJ(F–F) in the quaternary complexes and the corresponding intermolecular distances, but not in the ternary complexes, a reflection of the distorted geometries of the bridging dimers in ternary complexes.  相似文献   

13.
《中国化学快报》2021,32(8):2474-2478
Fabrication of well-designed heterojunctions is an extraordinarily attractive pathway for boosting the photocatalytic activity toward CO_2 photoreduction.Herein,a novel kind of na nosheet-based intercalation hybrid coupled with CdSe quantum dots(QDs) was successfully fabricated by a facile solvothermal method and served as photocatalyst for full-spectrum-light-driven CO_2 reduction.Ultra-small CdSe QDs were rationally in-situ introduced and coupled with lamellar ZnSe-intercalation hybrid nanosheet,resulting in the formation of CdSe Q.Ds/ZnSe hybrid heterojunction.Significantly,the concentration of Cd~(2+) could change directly the crystallinity and micromorphology of ZnSe intercalation hybrid,which in turn would impact on the photocatalysis activity.The optimized CdSe QDs/ZnSe hybrid-5 composite demonstrated a considerable CO yield rate of the 25.6 μmol g~(-1) h~(-1) without any additional cocatalysts or sacrificial agents assisting,making it one of the best reported performance toward CO_2 photoreduction under full-spectrum light.The elevated CO_2 photoreduction activity could be attributed to the special surface heterojunction,leading to improving the ability of light absorption and promoting the separation/transfer of photogenerated carriers.This present study developed a new strategy for designing inorganic-organic heterojunctions with enhanced photocatalyst for CO_2 photoreduction and provided an available way to simultaneously mitigate the greenhouse effect and alleviate energy shortage pressure.  相似文献   

14.
Four new type II organic dyes with D‐π‐A structure (donor‐π‐conjugated‐acceptor) and two typical type II sensitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron‐withdrawing group (? CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D‐π‐A system obviously outperform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push‐pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc=7.3 mA·cm?2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.  相似文献   

15.
In the present communication the ionophoretic technique has been used for the study of Fe(III), Cu(II), Ni(II), and Co(II)-hippuric acid binary and Fe(III), Cu(II), Ni(II), and Co(II)-hippuric acid-NTA ternary complexes (NTA — nitrilotriacetic acid). The stability constants of metal-hippuric acid binary complexes are found to be 103.54, 102.95, 102.77, and 102.70 and the stability constants of metal-hippuric acid-NTA ternary complexes have been found to be 106.16, 106.06, 106.01, and 105.90 for Fe(III), Cu(II), Ni(II), and Co(II) complexes, respectively, at μ = 0.1 M (HClO4) and 25°C.  相似文献   

16.
The crystal and mol­ecular structures of 4‐ethyl‐3,5‐dimethyl­pyrrole‐2‐carbaldehyde, C10H15NO, (I), benzyl 3,5‐dimethyl­pyrrole‐2‐carboxyl­ate, C14H15NO2, (II), benzyl 4‐acetyl‐3,5‐dimethyl­pyrrole‐2‐carboxyl­ate, C16H17NO3, (III), dimethyl 3,5‐dimethyl­pyrrole‐2,4‐dicarboxyl­ate, C10H13NO4, (IV), 4‐ethyl‐3,5‐dimethyl‐2‐(p‐tos­ylacet­yl)pyrrole, C17H21NO3S, (V), and ethyl 4‐(2‐ethoxy­carbonyl‐2‐hydroxy­acrylo­yl)‐3,5‐dimethyl­pyrrole‐2‐carboxyl­ate, C15H19NO6, (VI), were determined at 130 K. Compounds (I), (II), (IV), (V) and (VI) form hydrogen‐bonded dimers [N—H⋯O=C = 1.97 (2)–2.03 (3) Å]. Four dimers, viz. (I) and (IV)–(VI), have inversion symmetry, while the dimer of (II) has twofold symmetry. Only (III) forms polymeric chains involving hydrogen bonds between the pyrrole H atom and the acetyl carbonyl group [H⋯O = 1.97 (2) Å] and is further stabilized by CH3⋯O inter­actions (C—H⋯O = 2.28–2.49 Å). Compound (VI) was found to occur as the enol ether in the crystal.  相似文献   

17.
Compared with the well‐explored cadmium‐based one‐dimensional nanorods (NRs), it is still a challenge to produce heavy‐metal‐free II–VI semiconductor analogues with a controlled size, shape, and crystal structure. Herein, a synthetic strategy towards ZnSe NRs with a zinc blende crystal structure is presented, where use of the anisotropic nuclei produced via a high‐temperature selenium injection favors anisotropic growth. Elongated ZnSe NRs were produced from anisotropic ZnSe nuclei, while spherical ZnSe nanocrystals were obtained starting from isotropic nuclei. The different free energy at (111) and (220) planes in anisotropic ZnSe nuclei induces the anisotropic growth of (111) plane for ZnSe NRs. Proper choice of the capping ligand (1‐dodecanethiol) has an important implication for the formation of anisotropic ZnSe nuclei and also allows the control of the diameter of the final ZnSe NRs by limiting the growth of the (220) crystal plane of anisotropic ZnSe nuclei.  相似文献   

18.
During XPS analysis, the soft X‐ray‐induced reduction of metals such as Cr(VI) and Ce(IV) in oxides has been reported in the literature and some mechanisms have been proposed to explain this phenomenon. The reduction of U(VI) by the beam during X‐ray Photoelectron Spectroscopy has been already reported in the literature but only for U(VI) sorbed or precipitated onto solids with reducing properties (as micas or pyrites) for whose Fe(II) can also induce the reduction of U(VI), or onto TiO2 whose the photocatalytic properties are well known. The objective of this paper is to investigate the effects of X‐ray beam on U(VI) bulk compounds (UO3, UO2(OH)2, (UO2)2SiO4, UO2(CH3COO)2 and UO2C2O4). Successive U4f, U5f, C1s XPS spectra were recorded and compared as a function of the irradiation time. The XPS photoreduction of U(VI) into U(IV) is only observed for uranyl compounds containing organic matter (uranyl acetate and uranyl oxalate). Considering the evolution of the C1s signal during the X‐ray irradiation, a significant decrease of the C ? O component simultaneously to the U(VI) reduction is observed, which suggests a desorption of CO or other volatile organic products from the solid surface. All these results on U(VI) bulk compounds indicate the important role of organic carbon species in the photoreduction process and to explain these observations, a photoreduction mechanism has been suggested. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
 The stability constants for the binary M(II)- chlorpromazine hydrochloride (CPZ) and the ternary complexes M(II)-chlorpromazine-amino acid, have been studied using pH-measurements. The amino acids (aa) are: glycine, glutamic acid, histidine and the metal ions are: Cu(II), Zn(II), Co(II), Ni(II) and UO2(II). All experiments were carried out in the presence of 0.1 mol dm−3 KNO3. The resulting stability constants of the binary and the ternary complexes were compared. It was observed that the stability of the ternary complexes-except for glutamic acid – are lower than of the binary ones. Received October 22, 1998. Revision March 14, 1999.  相似文献   

20.
Adsorption of carbon monoxide(II) and oxygen on powders and nanofilms of solid solutions and binary compounds of the ZnSe-CdTe system was studied volumetrically, and by piezoquartz microweighing and IR spectroscopy of multiple disturbed complete internal reflections. The mechanisms and principles of adsorption were established in dependence on the conditions of the habitus of an experimental sample and the composition of the system’s semiconductors, based on an analysis of IR spectra; the thermodynamic and kinetic characteristics of adsorption; experimental dependences αp = f(T), αT = f(P), and αT = f(t); and the acid-base and other physicochemical characteristics of adsorbents and the electron nature of adsorbate molecules. Conclusions drawn earlier as to the retention of local active centers on the surface of a diamond-like semiconductor (which are responsible for adsorption and catalytic processes) upon a change in the habitus of a sample were confirmed. Certain features in the behavior of solid solutions (ZnSe) x (CdTe)1 − x were revealed alongside commonalities with binary compounds (ZnSe, CdTe), testifying to the presence of critical points on “adsorption characteristics-composition” diagrams. The most active adsorbents (with respect to CO and O2) were discovered on the basis of these diagrams, which were used in creating highly sensitive and selective sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号