首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The complexes [Co(L1)(mpy)] ( 1 ), [Ni(L1)(mpy)] ( 2 ), [Co(L1)(tbpy)] · 2H2O ( 3 ), [Ni2(L1)2(tbpy)2] · 5H2O ( 4 ), [Mn2(L1)2(tbpy)2] · 3H2O ( 5 ), [Mn(L1)(biim‐3)] ( 6 ), [Ni2(L1)2(btb)2(H2O)] · 2H2O ( 7 ), [Cu(L2)(mpy)] · 7H2O ( 8 ), [Co(L2)(tbpy)(H2O)] ( 9 ), [Ni(L2)(tbpy)(H2O)] · H2O ( 10 ), [Cu(L2)(bib)] · 2H2O ( 11 ), and [Cu(L2)(btb)] · 2H2O ( 12 ) [H2L1 = (3‐carboxyl‐phenyl)‐(4‐(2′‐carboxyl‐phenyl)‐benzyl)ether, H2L2 = 3‐carboxy‐1‐(4′‐carboxybenzyl)‐2‐oxidopyridinium, mpy = 2‐(4‐(4′‐methylphenyl)‐6‐(pyrindin‐2‐yl)pyridin‐2‐yl)pyridine), tbpy = 2‐(4‐(4′‐tert‐butylphenyl)‐6‐(pyrindin‐2‐yl)pyridin‐2‐yl)pyridine), biim‐3 = 1,3‐bis(imidazol‐1′‐yl)propane, btb = 1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene, bib = 1,4‐bis(imidazol‐1′‐ylmethyl)benzene] were synthesized. Compounds 1 – 6 have similar 1D chain structures, which are further linked by π–π interactions to generate supramolecular double chains for 1 and 2 , and supramolecular layers for 3 – 6 . Compound 7 displays a 3D 6‐connected framework with (44 · 611) topology. Compound 8 features a monomolecular structure, which is further linked by hydrogen bonds between the lattice water molecules and carboxylate oxygen atoms of L2 anions to form a 2D supramolecular layer. The monomolecular structures of 9 and 10 are connected by hydrogen bonds and π–π interactions simultaneously to generate supramolecular layers. Compounds 11 and 12 show layer structures.  相似文献   

2.
Hypercoordination of main‐group elements such as the heavier Group 14 elements (silicon, germanium, tin, and lead) usually requires strong electron‐withdrawing ligands and/or donating groups. Herein, we present the synthesis and characterization of two hexaaryltin(IV) dianions in form of their dilithium salts [Li2(thf)2{Sn(2‐pyMe)6}] (pyMe=C5H3N‐5‐Me) ( 2 ) and [Li2{Sn(2‐pyOtBu)6}] (pyOtBu=C5H3N‐6‐OtBu) ( 3 ). Both complexes are stable in the solid state and solution under inert conditions. Theoretical investigations of compound 2 reveal a significant valence 5s‐orbital contribution of the tin atom forming six strongly polarized tin–carbon bonds.  相似文献   

3.
Reactions of rhodium(III) halides with multidentate N,S‐heterocycles, (LH3) 1,3,5‐tris(benzimidazolyl)benzene (L1H3; 1 ), 1,3,5‐tris(N‐methylbenzimidazolyl) benzene (L2H3; 2 ) and 1,3,5‐tris(benzothiazolyl)benzene (L3H3; 3 ), in the molar ratio 1:1 in methanol–chloroform produced mononuclear cyclometallated products of the composition [RhX2(LH2)(H2O)] (X = Cl, Br, I; LH2 = L1H2, L2H2, L3H2). When the metal to ligand ( 1–3 or 1,2,4,5‐tetrakis(benzothiazolyl)benzene [L4H2; 4 ]) molar ratio was 2:1, the reactions yielded binuclear complexes of the compositions [Rh2Cl5(LH2)(H2O)3] (LH2 = L1H2, L2H2, L3H2) and [Rh2X4(L4)(H2O)2] (X = Cl, Br, I). Elemental analysis, IR and 1H nuclear magnetic resonance (NMR) chemical shifts supported the binuclear nature of the complexes. Cyclometallation was detected by conventional 13C NMR spectra that showed a doublet around ~190 ppm. Cyclometallation was also detected by gradient‐enhanced heteronuclear multiple bond correlation (g‐HMBC) experiment that showed cross‐peaks between the cyclometallated carbon and the central benzene ring protons of 1–3 . Cyclometallation was substantiated by two‐dimensional 1H? 1H correlated experiments (gradiant‐correlation spectroscopy and rotating frame Overhauser effect spectroscopy) and 1H? 13C single bond correlated two‐dimensional NMR experiments (gradient‐enhanced heteronuclear single quantum coherence). The 1H? 15N g‐HMBC experiment suggested the coordination of the heterocycles to the metal ion via tertiary nitrogen. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

5.
Homo- and heteroleptic aryloxides of the type MX4–x(OAr)x [M = TiIV, ZrIV; X = OPri, Cl; x = 1,2,3,4; OAr = OC6H4Pri-4(OAr1), OC6H3Me-2-Pri-5(OAr2), OC6H3Me-5-Pri-2(OAr3), OC6H2Me3-2,4,6(OAr4), OC6H3But2-2,4(OAr5), OC6H3But2-2,6(OAr6)] have been prepared either by alkoxo–aryloxo or chloro-aryloxo exchange reactions in benzene or tetrahydrofuran. All these new derivatives have been characterized by elemental analyses, spectroscopic (i.r., 1H-, 13C-n.m.r.) studies and molecular weight measurements. The FAB mass spectral studies of four representative derivatives Support a dimeric nature for [Ti(OC6H3Me-5-Pri-2)4], [TiCl2(OC6H3Me-5-Pri-2)2], and [Zr(OC6H3But2-2,4)4(thf)], whereas the derivative [ZrCl(OC6H3But2-2,4)3(thf)] is monomeric.  相似文献   

6.
Large magnesium hydride aggregates [Mg13(Me3TACD)62‐H12)(μ3‐H6)][A]2 ((Me3TACD)H=1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane; A=AlEt4, AlnBu4, B{3,5‐(CF3)2C6H3}4) were synthesized stepwise from alkyl complexes [Mg2(Me3TACD)R3] (R=Et, nBu) and phenylsilane in the presence of additional MgII ions. The central magnesium atom is octahedrally coordinated by six hydrides as in solid α‐MgH2 of the rutile type. Further coordination to six magnesium atoms leads to a substructure of seven edge‐sharing octahedra as found in the hexagonal layer of brucite (Mg(OH)2). Upon protonolysis in the presence of 1,2‐dimethoxyethane (DME), this cluster was degraded into a tetranuclear dication [Mg2(Me3TACD)(μ‐H)2(DME)]2[A]2.  相似文献   

7.
2‐(Methylthio)aniline (H2L1) and 2‐(phenylthio)aniline (H2L2) were treated with n‐butyllithium to yield the corresponding anilides [LiHL1] and [LiHL2]. Recrystallization from diethyl ether and THF afforded the solvates [LiHL1(Et2O)] and [LiHL2(THF)2]. The X‐ray crystal structure determination revealed dimeric molecules which exhibit a centrosymmetric Li2N2 ring. In the case of [LiHL1(Et2O)] the SMe group is involved in Li coordination and in the case of [LiHL2(THF)2] the SPh group is part of an intramolecular N–H ··· S hydrogen bridge. The sodium anilides [NaHL1(DME)] and [NaHL2(DME)] were obtained from the reaction of H2L1 and H2L2 with sodium amide in DME as solvent. Like in the case of the lithium amides the sodium derivatives [NaHL1(DME)] and [NaHL2(DME)] display centrosymmetric Na2N2 cores. The coordination sphere of the sodium atoms is completed by DME molecules, which act as chelating ligands. In the case of [NaHL1(DME)] the DME molecules enable additionally a linkage of the dimeric subunits to give a chain structure. The potassium derivatives [KNHL1] and [KNHL2(DME)] were obtained from H2L1 and H2L2 and potassium hydride in DME as solvent. [KNHL1] displays a distinct structure based on [(KNHL1)2] dimers, which are linked by additional [KNHL1] units to give a 3D coordination polymer with {4.8.16(3)} topology. [KNHL2(DME)] forms dimers linked by bridging DME molecules to give a chain‐like coordination polymer.  相似文献   

8.
Mono‐ and Dinuclear Rhodium Complexes with Arsino(phosphino)methanes in Different Coordination Modes The cyclooctadiene complex [Rh(η4‐C8H12)(κ2tBu2AsCH2PiPr2)](PF6) ( 1a ) reacts with CO and CNtBu to give the substitution products [Rh(L)22tBu2AsCH2PiPr2)](PF6) ( 2 , 3 ). From 1a and Na(acac) in the presence of CO the neutral compound [Rh(κ2‐acac)(CO)(κ‐PtBu2AsCH2PiPr2)] ( 4 ) is formed. The reactions of 1a , the corresponding B(ArF)4‐salt 1b and [Rh(η4‐C8H12)(κ2iPr2AsCH2PiPr2)](PF6) ( 5 ) with acetonitrile under a H2 atmosphere affords the complexes [Rh(CH3CN)22‐R2AsCH2PiPr2)]X ( 6a , 6b , 7 ), of which 6a (R = tBu; X = PF6) gives upon treatment with Na(acac‐f6) the bis(chelate) compound [Rh(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 8 ). From 8 and CH3I a mixture of two stereoisomers of composition [Rh(CH3)I(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 9/10 ) is generated by oxidative addition, and the molecular structure of the racemate 9 has been determined. The reactions of 1a and 5 with CO in the presence of NaCl leads to the formation of the “A‐frame” complexes [Rh2(CO)2(μ‐Cl)(μ‐R2AsCH2PiPr2)2](PF6) ( 11 , 12 ), which have been characterized crystallographically. From 11 and 12 the dinuclear substitution products [Rh2(CO)2(μ‐X)(μ‐R2AsCH2PiPr2)2](PF6) ( 13 ‐ 16 ) are obtained by replacing the bridging chloride for bromide, hydride or hydroxide, respectively. While 12 (R = iPr) reacts with NaI to give the related “A‐frame” complex 18 , treatment of 11 (R = tBu) with NaI yields the mononuclear chelate compound [RhI(CO)(κ2tBu2AsCH2PiPr2)] ( 20 ). The reaction of 20 with CH3I affords the acetyl complex [RhI2{C(O)CH3}(κ2tBu2AsCH2PiPr2)] ( 21 ) with five‐coordinate rhodium atom.  相似文献   

9.
Tin(IV) complexes of the series of dianionic terdentate Schiff bases N‐[(2‐pyrroyl)methylidene]‐N′‐tosylbenzene‐1,2‐diamine, (H2L1), N‐[(2‐hydroxyphenyl)methylidene]‐N′‐tosylbenzene‐1,2‐diamine (H2L2) and some R substituted 2‐{[(2‐hydroxyphenyl)imino]methyl}phenols [R = H (H2L3), 4,6‐(OCH3)2 (H2L4), 3‐(OC2H5) (H2L5) and 3,5‐Br2 (H2L6)] have been synthesized. The compounds were obtained by the electrochemical oxidation of a tin anode in a cell containing an acetonitrile solution of the corresponding ligand. The complex [SnL12] was also obtained by reaction of SnCl2·2H2O and H2L1 in methanol in the presence of triethylamine. The crystal structure of the ligand [H2L6] and the complexes [SnL12] (1) , [SnL22] (2) , [SnL32] (3) and [SnL62] (6) were determined by X‐ray diffraction. In the complexes, the tin atom is in an octahedral environment coordinated by two dianionic terdentate ligands. Spectroscopic data for the complexes (IR, 1H and 119Sn NMR and mass spectra) are discussed and related to structural information.  相似文献   

10.
Reaction of [U(TrenTIPS)(PH2)] ( 1 , TrenTIPS=N(CH2CH2NSiPri3)3) with C6H5CH2K and [U(TrenTIPS)(THF)][BPh4] ( 2 ) afforded a rare diuranium parent phosphinidiide complex [{U(TrenTIPS)}2(μ‐PH)] ( 3 ). Treatment of 3 with C6H5CH2K and two equivalents of benzo‐15‐crown‐5 ether (B15C5) gave the diuranium μ‐phosphido complex [{U(TrenTIPS)}2(μ‐P)][K(B15C5)2] ( 4 ). Alternatively, reaction of [U(TrenTIPS)(PH)][Na(12C4)2] ( 5 , 12C4=12‐crown‐4 ether) with [U{N(CH2CH2NSiMe2But)2CH2CH2NSi(Me)(CH2)(But)}] ( 6 ) produced the diuranium μ‐phosphido complex [{U(TrenTIPS)}(μ‐P){U(TrenDMBS)}][Na(12C4)2] [ 7 , TrenDMBS=N(CH2CH2NSiMe2But)3]. Compounds 4 and 7 are unprecedented examples of uranium phosphido complexes outside of matrix isolation studies, and they rapidly decompose in solution underscoring the paucity of uranium phosphido complexes. Interestingly, 4 and 7 feature symmetric and asymmetric UPU cores, respectively, reflecting their differing steric profiles.  相似文献   

11.
The μ‐amino–borane complexes [Rh2(LR)2(μ‐H)(μ‐H2B=NHR′)][BArF4] (LR=R2P(CH2)3PR2; R=Ph, iPr; R′=H, Me) form by addition of H3B?NMeR′H2 to [Rh(LR)(η6‐C6H5F)][BArF4]. DFT calculations demonstrate that the amino–borane interacts with the Rh centers through strong Rh‐H and Rh‐B interactions. Mechanistic investigations show that these dimers can form by a boronium‐mediated route, and are pre‐catalysts for amine‐borane dehydropolymerization, suggesting a possible role for bimetallic motifs in catalysis.  相似文献   

12.
Reactions of 1,2-catechol with tBu3M (M = Ga, In) have been studied. Trinuclear compounds [tBu5M3(OC6H4O)2] [M = Ga (1), M = In (2)] were synthesised in the reaction of 2 equiv. of C6H4(OH)2 with 3 equiv. of tBu3M in refluxing solvents. At room temperature the reaction of 1,2-catechol with tBu3In in Et2O leads to the formation of a binuclear complex [tBu4In2(OC6H4OH)2 · 2Et2O] (3) possessing a four-membered In2O2 core and two unreacted hydroxyl groups. The same reaction carried out in a non-coordinating solvent (CH2Cl2) results in formation a compound [tBu3In2(OC6H4O)(OC6H4OH)] (4), which undergoes a reaction with tBu3In to yield the product 2. Moreover two intermediate isomeric products 5 and 6 of formula [tBu3Ga2(OC6H4O)(OC6H4OH)] were isolated from the post-reaction mixture of 1,2-catechol with tBu3Ga. The compound 6 possessing a different coordination of gallium atoms than 5 is a result of the intramolecular rearrangement of the compound 5 to decrease the steric repultion between ligands. Compounds 3 and 6 were structurally characterised. According to the structure of intermediate products 3-6 a reaction pathway of 1,2-catechols with group 13 metal trialkyls was proposed.  相似文献   

13.
《印度化学会志》2021,98(4):100049
The new azo-imine ligands 2,4-di-tert-butyl-6-((2-((2-hydroxyphenyl)diazenyl) phenylimino)methyl)phenol, H2L1, 1a, and 2,4-di-tert-butyl-6-((2-((2-hydroxyphenyl) diazenyl)p-chlorophenylimino)phenol, H2L2, 1b, were prepared. Reaction of H2L1;1a, and H2L2;1b, with uranyl nitrate hexahydrate afforded the mononuclear complexes of compositions [U(O)2(L1)(H2O)]; 2a, and [U(O)2(L2)(H2O)]; 2b, complexes respectively. The newly synthesised ligands (1a and 1b) and the complexes (2a and 2b) were characterised unequivocally. The x-ray structure of 2a was determined. The tetradentate dianionic ligand (L1)2- coordinated the uranium ion equatorially with a water molecule in the same plane. Two axially coordinated oxo ligands completed the overall pentagonal bipyramid geometry around U(VI) ion. Structural pattern, electron transfer properties (oxidation near 1.32 ​V vs Ag/AgCl) and electronic transitions of [U(O)2(L1)(H2O)]; 2a, and [U(O)2(L2)(H2O)]; 2b have been rationalized by DFT calculations.  相似文献   

14.
The binuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,2κO‐(1,2‐dimethoxyethane‐1κ2O ,O ′)bis(μ‐phenylmethanolato‐1:2κ2O :O )(tetrahydrofuran‐2κO )dimagnesium(II), [Mg2(C7H7O)2(C15H23O)2(C4H8O)(C4H10O2)] or [(BHT)(DME)Mg(μ‐OBn)2Mg(THF)(BHT)], (I), was obtained from the complex [(BHT)Mg(μ‐OBn)(THF)]2 by substitution of one tetrahydrofuran (THF) molecule with 1,2‐dimethoxyethane (DME) in toluene (BHT is O‐2,6‐t Bu2‐4‐MeC6H4 and Bn is benzyl). The trinuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,3κO‐tetrakis(μ‐2‐methylphenolato)‐1:2κ4O :O ;2:3κ4O :O‐bis(tetrahydrofuran)‐1κO ,3κO‐trimagnesium(II), [Mg3(C7H7O)4(C15H23O)2(C4H8O)2] or [(BHT)2(μ‐O‐2‐MeC6H4)4(THF)2Mg3], (II), was formed from a mixture of Bu2Mg, [(BHT)Mg(n Bu)(THF)2] and 2‐methylphenol. An unusual tetranuclear complex, bis(μ3‐2‐aminoethanolato‐κ4O :O :O ,N )tetrakis(μ2‐2‐aminoethanolato‐κ3O :O ,N )bis(2,6‐di‐tert‐butyl‐4‐methylphenolato‐κO )tetramagnesium(II), [Mg4(C2H6NO)6(C15H23O)2] or Mg4(BHT)2(OCH2CH2NH2)6, (III), resulted from the reaction between (BHT)2Mg(THF)2 and 2‐aminoethanol. A polymerization test demonstrated the ability of (III) to catalyse the ring‐opening polymerization of ϵ‐caprolactone without activation by alcohol. In all three complexes (I)–(III), the BHT ligand demonstrates the terminal κO‐coordination mode. Complexes (I), (II) and (III) have binuclear rhomboid Mg2O2, trinuclear chain‐like Mg3O4 and bicubic Mg4O6 cores, respectively. A survey of the literature on known polynuclear Mgx Oy core types for ArO–Mg complexes is also presented.  相似文献   

15.
The Reaction of Ytterbium with N‐iodo‐triphenylphosphaneimine. Crystal Structures of [Yb2I(THF)2(NPPh3)4] · 2 THF, [YbI2(HNPPh3)(DME)2], and [{YbI2(DME)2}2(μ‐DME)] When treated with ultrasound, the reaction of ytterbium powder with INPPh3 in tetrahydrofuran leads to [YbI2(THF)4] and to the mixed‐valence phosphoraneiminato complex [Yb2I(THF)2(NPPh3)4] · 2 THF ( 1 ), which forms red single‐crystals. In the analogous reaction in 1,2‐dimethoxyethane (DME) only the ytterbium(II) iodide solvates [YbI2(HNPPh3)(DME)2] ( 2 ) and [{YbI2(DME)2}2 · (μ‐DME)] ( 3 ) can be isolated, which form yellow single crystals. All compounds were characterized by crystal structure analyses. 1 : Space group P1, Z = 2, lattice dimensions at –80 °C: a = 1337.6(5), b = 1389.6(5), c = 2244.2(17) pm; α = 86.11(7)°, β = 88.06(7)°, γ = 88.63(4)°; R = 0.0759. In 1 the two ytterbium atoms are connected via the N atoms of two phosphoraneiminato groups (NPPh3) to form a planar Yb2N2 four‐membered ring. The structure can also be described as an ion pair consisting of [YbI(THF)2]+ and [Yb(NPPh3)4]. 2 : Space group P21, Z = 2, lattice dimensions at –80 °C: a = 811.9(1), b = 1114.0(1), c = 1741.3(1) pm; β = 95.458(5)°; R = 0.0246. 2 forms molecules in which the ytterbium atom is coordinated in a pentagonal‐bipyramidal fashion with the iodine atoms in the axial positions. The O atoms of the two DME‐chelates and the N atom of the phosphaneimine ligand HNPPh3 are in the equatorial positions. 3 : Space group P1, Z = 2, lattice dimensions at –70 °C: a = 817.5(1), b = 1047.7(1), c = 1115.5(2) pm; α = 90.179(10)°, β = 97.543(15)°, γ = 91.087(12)°; R = 0.0317. 3 has a dimeric molecular structure, in which the two fragments {YbI2(DME)2} are connected centrosymmetrically via a μ‐DME bridge. As in 2 , the ytterbium atoms are coordinated in a pentagonal‐bipyramidal fashion with the iodine atoms in the axial positions, as well as with the two DME chelates and with one O atom each of the μ‐DME ligand in the equatorial positions.  相似文献   

16.
Coordinatively Unsaturated Diiron Complexes: Synthesis and Crystal Structures of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] and [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] [Fe2(μ‐CO)(CO)6(μ‐H)(μ‐PtBu2)] ( 1 ) reacts spontaneously with dppm (dppm = Ph2PCH2PPh2) to give [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 2 c ). By thermolysis or photolysis, 2 c loses very easily one carbonyl ligand and yields the corresponding electronically and coordinatively unsaturated complex [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 3 ). 3 exhibits a Fe–Fe double bond which could be confirmed by the addition of methylene to the corresponding dimetallacyclopropane [Fe2(CO)4(μ‐CH2)(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 4 ). The reaction of 1 with dppe (Ph2PC2H4PPh2) affords [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppe)] ( 5 ). In contrast to the thermolysis of 2 c , yielding 3 , the heating of 5 in toluene leads rapidly to complete decomposition. The reaction of 1 with PPh3 yields [Fe2(CO)6(H)(μ‐PtBu2)(PPh3)] ( 6 a ), while with tBu2PH the compound [Fe2(μ‐CO)(CO)5(μ‐H)(μ‐PtBu2)(tBu2PH)] ( 6 b ) is formed. The thermolysis of 6 b affords [Fe2(CO)5(μ‐PtBu2)2] and the degradation products [Fe(CO)3(tBu2PH)2] and [Fe(CO)4(tBu2PH)]. The molecular structures of 3 , 4 and 6 b were determined by X‐ray crystal structure analyses.  相似文献   

17.
The reactions of MCl5 or MOCl3 with imidazole‐based pro‐ligand L1H, 3,5‐tBu2‐2‐OH‐C6H2‐(4,5‐Ph21H‐)imidazole, or oxazole‐based ligand L2H, 3,5‐tBu2‐2‐OH‐C6H2(1H‐phenanthro[9,10‐d])oxazole, following work‐up, afforded octahedral complexes [MX(L1, 2)], where MX=NbCl4 (L1, 1 a ; L2, 2 a ), [NbOCl2(NCMe)] (L1, 1 b ; L2, 2 b ), TaCl4 (L1, 1 c ; L2, 2 c ), or [TaOCl2(NCMe)] (L1, 1 d ). The treatment of α‐diimine ligand L3, (2,6‐iPr2C6H3N?CH)2, with [MCl4(thf)2] (M=Nb, Ta) afforded [MCl4(L3)] (M=Nb, 3 a ; Ta, 3 b ). The reaction of [MCl3(dme)] (dme=1,2‐dimethoxyethane; M=Nb, Ta) with bis(imino)pyridine ligand L4, 2,6‐[2,6‐iPr2C6H3N?(Me)C]2C5H3N, afforded known complexes of the type [MCl3(L4)] (M=Nb, 4 a ; Ta, 4 b ), whereas the reaction of 2‐acetyl‐6‐iminopyridine ligand L5, 2‐[2,6‐iPr2C6H3N?(Me)C]‐6‐Ac‐C5H3N, with the niobium precursor afforded the coupled product [({2‐Ac‐6‐(2,6‐iPr2C6H3N?(Me)C)C5H3N}NbOCl2)2] ( 5 ). The reaction of MCl5 with Schiff‐base pro‐ligands L6H–L10H, 3,5‐(R1)2‐2‐OH‐C6H2CH?N(2‐OR2‐C6H4), (L6H: R1=tBu, R2=Ph; L7H: R1=tBu, R2=Me; L8H: R1=Cl, R2=Ph; L9H: R1=Cl, R2=Me; L10H: R1=Cl, R2=CF3) afforded [MCl4(L6–10)] complexes (M=Nb, 6 a – 10 a ; M=Ta, 6 b – 9 b ). In the case of compound 8 b , the corresponding zwitterion was also synthesised, namely [Ta?Cl5(L8H)+] ? MeCN ( 8 c ). Unexpectedly, the reaction of L7H with TaCl5 at reflux in toluene led to the removal of the methyl group and the formation of trichloride 7 c [TaCl3(L7‐Me)]; conducting the reaction at room temperature led to the formation of the expected methoxy compound ( 7 b ). Upon activation with methylaluminoxane (MAO), these complexes displayed poor activities for the homogeneous polymerisation of ethylene. However, the use of chloroalkylaluminium reagents, such as dimethylaluminium chloride (DMAC) and methylaluminium dichloride (MADC), as co‐catalysts in the presence of the reactivator ethyl trichloroacetate (ETA) generated thermally stable catalysts with, in the case of niobium, catalytic activities that were two orders of magnitude higher than those previously observed. The effects of steric hindrance and electronic configuration on the polymerisation activity of these tantalum and niobium pre‐catalysts were investigated. Spectroscopic studies (1H NMR, 13C NMR and 1H? 1H and 1H? 13C correlations) on the reactions of compounds 4 a / 4 b with either MAO(50) or AlMe3/[CPh3]+[B(C6F5)4]? were consistent with the formation of a diamagnetic cation of the form [L4AlMe2]+ (MAO(50) is the product of the vacuum distillation of commercial MAO at +50 °C and contains only 1 mol % of Al in the form of free AlMe3). In the presence of MAO, this cationic aluminium complex was not capable of initiating the ROMP (ring opening metathesis polymerisation) of norbornene, whereas the 4 a / 4 b systems with MAO(50) were active. A parallel pressure reactor (PPR)‐based homogeneous polymerisation screening by using pre‐catalysts 1 b , 1 c , 2 a , 3 a and 6 a , in combination with MAO, revealed only moderate‐to‐good activities for the homo‐polymerisation of ethylene and the co‐polymerisation of ethylene/1‐hexene. The molecular structures are reported for complexes 1 a – 1 c , 2 b , 5 , 6 a , 6 b, 7 a, 8 a and 8 c .  相似文献   

18.
Organolanthanoids of several classes were examined as potential styrene and propene polymerization catalysts. They are: molecular hydrides of divalent lanthanoids (samarium, europium, ytterbium); naphthalene and stilbene complexes of neodymium(III), samarium(II), europium(II), ytterbium(II), lutetium(III); amides and alkoxides (including heterobifunctional derivatives) of praseodymium(III), neodymium(III), samarium(II), europium(II), thulium(III), ytterbium(II, III); thiolate of samarium(III); phenyl and phenylethinyl derivatives of europium(II), thulium(III), ytterbium(II); methylytterbium cluster Yb8 (μ‐CH3)14(μ‐CH2)(THF)6; heterobimetallic samarium(II), ytterbium(II, III) complexes; diazabutadiene ytterbium(III) derivatives; metallic praseodymium and ytterbium, activated by iodine. The highest activity in styrene polymerization revealed hydrides, naphthalene and stilbene complexes of samarium(II), europium(II) and ytterbium(II). In the propene polymerization only [(η5‐C5H4)CH2CH­(CH2OBu)(η1‐O)]YbMe(THF) displayed noticeable activity.Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The electronic structure of various complexes of pentavalent uranyl species, namely UO2+, is described, using DFT methods, with the aim of understanding how the structure of the ligands may influence the localisation of the unpaired 5f electron of uranium (V) and, finally, the stability of such complexes towards oxidation. Six complexes have been inspected: [UO2py5]+ (1), [(UO2py5)KI2] (2), [UO2(salan-tBu2)(py)K] (3), [UO2(salophen-tBu2)(thf)K] (4), [UO2(salen-tBu2)(py)K] (5), [and UO2-cyclo[6]pyrrole]1? (6), chosen to explore various ligands. In the five first complexes, the UO2+ species is well identified with the unpaired electron localized on the 5f uranium orbital. Additionally, for the salan, salen and salophen ligands, some covalent interactions have been observed, resulting from the presence of both donor and acceptor binding sites. In contrast, the last complex is best described by a UO22+ uranyl (VI) coordinated by the anionic radical cyclopyrrole, the highly delocalized π orbitals set stabilizing the radical behaviour of this ligand.  相似文献   

20.
A series of anionic five-coordinate binary oxorhenium(V) complexes with dithiolato ligands, Bu4N[ReO(L1)2] (1a), Bu4N[ReO(L2)2] (1b), and Bu4N[ReO(L3)2] (1c), and a series of neutral octahedral ternary oxorhenium(V) complexes of mixed dithiolato and bipyridine ligands, [ReO(L1)(bpy)Cl] (2a), [ReO(L2)(bpy)Cl] (2b), and [ReO(L3)(bpy)Cl] (2c) (where L1H2 = ethane-1,2-dithiol, L2H2 = propane-1,3-dithiol, L3H2 = toluene-3,4-dithiol, and bpy = 2,2′-bipyridine), were isolated and characterized by physicochemical and spectroscopic methods. The solid state structure of 1c was established by X-ray crystallography. All the mononuclear oxorhenium(V) complexes are diamagnetic. The redox behavior of all the complexes has been studied voltammetrically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号