首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Photografting of poly(methyl methacrylate), PMMA chains on natural rubber (NR) chain backbones was studied in benzene solution using quinoline-bromine (Q-Br2) charge transfer complex as photoinitiator and MMA as monomer at 35°C in visible light. Analysis of overall products for determination of grafting efficiencies was done following a method of selective extraction of only the free rubber fraction by benzene-petroleum ether mixtures followed by separation of the NR-PMMA graft copolymer from free PMMA in the residue (taken in benzene solution) by fractional precipitation with methanol. High grafting efficiencies in the range of 75–95% were easily and generally obtained. Effects of variation of concentrations of initiator, rubber, and monomer on grafting efficiencies were examined and reported. Prior photodegradation of the rubber resulted in substantial lowering in grafting efficiencies. Overall mechanism of graft copolymerization has been discussed.  相似文献   

3.
Cellulose-MMA graft copolymers have been produced using aqueous-based, Ce(IV)-initiated and periodate-initiated systems and also photochemical initiation. The reaction variables studied include the effect on grafting of varying the MMA monomer concentration, the initiator type and concentration, and also the reaction time. Of the three initiator types examined, the Ce (IV)-initiated and the photochemically-initiated systems are comparable in their effects on graft copolymer formation. Concurrent homopolymer formation was in the region of 50% by weight. Periodate-initiation leads to less efficient grafting of MMA onto cellulose, although homopolymer formation is also lower (typically <20% by weight). The characterization of the copolymeric products through their properties as solids and, as their carbanilated derivatives, through their solution properties has been undertaken. Values of the activation onergy of decomposition (EA) of the cellulose-MMA graft copolymers decrease with increasing MMA content, ranging between 227 and 155kJ mol?1. There is also a dependence on initiator type and grafting reaction conditions used (EA (cellulose wood pulp) = 239 kJ mol?1; EA (PMMA) = 115 kJ mol?1). Quantitative zeta-potential (ζ) determinations for cellulose-MMA graft copolymer samples produce negative surface charge density (σ) values. At a comparable MMA grafting level of 70–80%, values are of the order: photochemical (?730 esu/cm2) > periodate (?470 esu/cm2) > Ce (IV)-initiation (?351 esu/cm2). Characterization of carbanilate solutions (by rheological examination) and of dry, carbanilate films (by study of surface wetting behavior) highlighted differences in the physical conformation of copolymers prepared by the different initiation routes. The highly degradative effect on cellulose of a periodate initiator, in comparison with the Ce (IV)-initiation system, is reflected in significantly reduced molar mass values (typically, Mn 65,000 as opposed to 130,000 for Ce (IV)-initiated graft copolymer carbanilates).  相似文献   

4.
On the basis of the proposal that cumene hydroperoxide (CHP) in the presence of the base tetraethylenepentamine (TEPA) can form radicals by the abstraction reaction over addition to allylic double bonds, the efficiency of grafting monomers of methyl methacrylate (MMA) and dimethylaminoethylmethacrylate (DMAEMA) on to natural rubber (NR) has been studied. Seeded emulsion polymerization was used to graft such monomers. Different concentrations of each monomer have been examined. The effects of the concentrations of the monomers were evaluated by 1H NMR spectroscopy and Transmission Electron Microscopy (TEM). There is good evidence for the formation of graft copolymers of modified NR under the core-shell morphology as well as satisfactory efficiency of grafting in the presence of high concentrations of both monomers. At lower concentrations the grafting were not significant. The images of the morphology was obtained by Transmission Electron Microscopy after the preparation of the samples by cryo-sectioning and chemical fixation techniques.  相似文献   

5.
Grafting of methyl methacrylate (MMA) onto delignified Grewia optiva fiber using ascorbic acid/H2O2 as an initiator was carried out under microwave irradiation. The effects of varying the microwave power, exposure time, and concentration of initiator and monomer of graft polymerization were studied to obtain maximum grafting percentage (26.54%). The experimental results showed that the optimal conditions for grafting were: exposure time, 10min; microwave power, 110 W; ascorbic acid concentration, 3.74mol/L × 10?2; H2O2 concentration, 0.97mol/L × 10?1; monomer concentration, 1.87mol/L × 10?1. The graft copolymers were characterized by Fourier transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA).  相似文献   

6.
The new acrylic monomer 4‐propanoylphenyl acrylate (PPA) was synthesized and copolymerized with methyl methacrylate (MMA) in methyl ethyl ketone at 70±1°C using benzoyl peroxide as a free radical initiator. The copolymers were characterized by FT‐IR, 1H‐NMR and 13C‐NMR spectroscopic techniques. The compositions of the copolymers were determined by 1H‐NMR analysis. The reactivity ratios of the monomers were determined using Fineman‐Ross (r1=0.5535 and r2=1.5428), Kelen‐Tüdös (r1=0.5307 and r2=1.4482), and Ext. Kelen‐Tüdös (r1=0.5044 and r2=1.4614), as well as by a nonlinear error‐in‐variables model (EVM) method using a computer program, RREVM (r1=0.5314 and r2=1.4530). The solubility of the polymers was tested in various polar and non‐polar solvents. The elemental analysis was determined by a Perkin‐Elmer C‐H analyzer. The molecular weights (Mw and Mn) of the copolymers were determined by gel permeation chromatography. Thermogravimetric analysis of the polymers reveals that the thermal stability of the copolymers increases with an increase in the mole fraction of MMA in the copolymers. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of MMA in the copolymers.  相似文献   

7.
Graft copolymerization of 2-hydroxyethyl methacrylate(HEMA) and mixtures of HEMA with methyl methacrylate (MMA) onto hide powder was attempted using ceric ammonium nitrate as initiator, with a view to optimize the conditions for graft copolymerization. Percent grafting and grafting efficiency were calculated for various variables such as monomer concentration, initator concentration and mole ratio of HEMA to MMA. Rp, Rg and Rh (rates of polymerization, grafting and homopolymerization respectively) were also evaluated. It was observed that Rp increased linearly with increasing concentration of MMA except at very low concentrations of the monomer. An explanation is given for the effect of variables on extent of grafting and grafting efficiency.  相似文献   

8.
Fluoroalkyl methacrylates, 2,2,2‐trifluoroethyl methacrylate ( 1 ), hexafluoroisopropyl methacrylate ( 2 ), 1,1,1,3,3,3‐hexafluoro‐2‐methyl‐2‐propyl methacrylate ( 3 ), and perfluoro t‐butyl methacrylate ( 4 ) were synthesized. Homopolymers and copolymers of these fluoroalkyl methacrylates with methyl methacrylate (MMA) were prepared and characterized. With the exception of the copolymers of MMA and 2,2,2‐trifluoroethyl methacrylate ( 1 ), the glass transition temperatures (Tgs) of the copolymers were found to deviate positively from the Gordon‐Taylor equation. The positive deviation from the Gordon‐Taylor equation could be accounted for by the dipole–dipole intrachain interaction between the methyl ester group and the fluoroalkyl ester group of the monomer units. These Tg values of the copolymers were found to fit with the Schneider equation. The fitting parameters in the Schneider equation were calculated, and R2 values, the coefficients of determination, were almost 1.0. The refractive indices of the copolymers, measured at 532, 633, and 839 nm wavelengths, were lower than that of PMMA and showed a linear relationship with monomer composition in the copolymers. 2 and MMA have a tendency to polymerize in an alternating uniform monomer composition, resulting in less light scattering. This result suggests that the copolymer prepared with an equal molar ratio of 2 and MMA may have useful properties with applications in optical devices. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4748–4755, 2008  相似文献   

9.
Copolymers of a liquid crystalline monomer, 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl]styrene (MPCS), with St and MMA were prepared by free radical polymerization at low conversion in chlorobenzene with 2,2′‐azobisisobutyronitrile (AIBN) as initiator. The copolymers of poly(MPCS‐co‐St) and poly(MPCS‐co‐MMA) were characterized by 1H NMR and GPC. The monomer reactivity ratios were determined by using the extended Kelen–Tudos (EKT) method. Structural parameters of the copolymers were obtained from the possibility statistics and monomer reactivity ratios. The influence of MPCS content in copolymers on the glass transition temperatures of copolymers was investigated by DSC. The thermal stabilities of the two copolymer systems increased with an increase of the molar fraction of MPCS in the copolymers. The liquid crystalline behavior of the copolymers was also investigated using DSC and POM. The results revealed that the copolymers with high MPCS molar contents exhibited liquid crystalline behaviors. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2666–2674, 2005  相似文献   

10.
 本工作研完了末端为甲基丙烯酸酯型的聚环氧乙烷大单体与丙烯酸乙酯的溶液自由基共聚。结果表明,大单体接枝效率和共聚物分子量受单体总浓度、投料比、大单体分子量及引发剂等的影响,接枝效率最高可达90%以上,分子量可在5-15×104范围内变化。丙烯酸乙酯与大单体共聚的竞聚率为0.83。共聚物用萃取法精制后,用IR、1H-NMR、裂解色谱、GPC和膜渗透压计等进行了表征。证实产物有预期的规整接枝共聚物结构。平均接枝数为2—11。  相似文献   

11.
Anionic polymerization of lauryl methacrylate (LMA) with 1,1‐diphenylhexyl lithium in tetrahydrofuran (THF) at ?40 °C resulted in a multimodal and broad molecular weight distribution (MWD) with poor initiator efficiency. In the presence of additives such as dilithium salt of triethylene glycol (G3Li2), LiCl, and LiClO4, the polymerization resulted in polymers with a narrow MWD (≤ 1.10). Diblock copolymers of methyl methacrylate (MMA) and LMA were synthesized by anionic polymerization using DPHLi as initiator in THF at ?40 °C with the sequential addition of monomers. The molecular weight distribution of the polymers was narrow and without homopolymer contamination when LMA was added to living PMMA chain ends. Diblock copolymers with broad/bimodal MWD were obtained with a reverse‐sequence monomer addition. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 875–882, 2004  相似文献   

12.

A new methacrylic monomer, 4‐nitro‐3‐methylphenyl methacrylate (NMPM) was prepared by reacting 4‐nitro‐3‐methyl phenol dissolved in methyl ethyl ketone (MEK) in the presence of triethylamine as a catalyst. Copolymerization of NMPM with methyl methacrylate (MMA) has been carried out in methyl ethyl ketone (MEK) by free radical solution polymerization at 70±1°C utilizing benzoyl peroxide (BPO) as initiator. Poly (NMPM‐co‐MMA) copolymers were characterized by FT‐IR, 1H‐NMR and 13C‐NMR spectroscopy. The molecular weights (Mw and Mn) and polydispersity indices (Mw/Mn) of the polymers were determined using a gel permeation chromatograph. The glass transition temperatures (Tg) of the copolymers were determined by a differential scanning calorimeter, showing that Tg increases with MMA content in the copolymer. Thermogravimetric analysis of the polymers, performed under nitrogen, shows that the stability of the copolymer increases with an increase in NMPM content. The solubility of the polymers was tested in various polar and non‐polar solvents. Copolymer compositions were determined by 1H‐NMR spectroscopy by comparing the integral peak heights of well separated aromatic and aliphatic proton peaks. The monomer reactivity ratios were determined by the Fineman‐Ross (r1 =7.090:r2=0.854), Kelen‐Tudos (r1=7.693: r2=0.852) and extended Kelen‐Tudos methods (r1=7.550: r2= 0.856).  相似文献   

13.
This article reports the synthesis of the block and graft copolymers using peroxygen‐containing poly(methyl methacrylate) (poly‐MMA) as a macroinitiator that was prepared from the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in the presence of bis(4,4′‐bromomethyl benzoyl peroxide) (BBP). The effects of reaction temperatures on the ATRP system were studied in detail. Kinetic studies were carried out to investigate controlled ATRP for BBP/CuBr/bpy initiating system with MMA at 40 °C and free radical polymerization of styrene (S) at 80 °C. The plots of ln ([Mo]/[Mt]) versus reaction time are linear, corresponding to first‐order kinetics. Poly‐MMA initiators were used in the bulk polymerization of S to obtain poly (MMA‐b‐S) block copolymers. Poly‐MMA initiators containing undecomposed peroygen groups were used for the graft copolymerization of polybutadiene (PBd) and natural rubber (RSS‐3) to obtain crosslinked poly (MMA‐g‐PBd) and poly(MMA‐g‐RSS‐3) graft copolymers. Swelling ratio values (qv) of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H NMR), gel‐permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1364–1373, 2010  相似文献   

14.
4‐Methacryloyl‐2,2,6,6‐tetramethyl‐piperidine (MTMP) was applied as reactive hindered amine piperidine. Photo‐induced copolymerization of methyl methacrylate (MMA, M1) with MTMP (M2) was carried out in benzene solution at ambient temperature. The reactivity ratios for these monomers were measured by running a series of reactions at various feed ratios of initial monomers, and the monomer incorporation into copolymer was determined using 1H NMR. Reactivity ratios of the MMA/MTMP system were measured to be r1 = 0.37 and r2 = 1.14 from extended Kelen‐Tüdos method. The results show that monomer MTMP prefers homopolymerization to copolymerization in the system, whereas monomer MMA prefers copolymerization to homopolymerization. Sequence structures of the MMA/MTMP copolymers were characterized using 1H NMR. The results show that the sequence structure for the main chain of the MMA/MTMP copolymers is mainly composed of a syndiotactic configuration, only with a little heterotactic configuration. Three kinds of the sequences of rr, rr′, and lr′ in the syndiotactic configuration are found. The sequence‐length distribution in the MMA/MTMP copolymers is also obtained. For f1 = 0.2, the monomer unit of MMA is mostly separated by MTMP units, and for f1 = 0.6, the alternating tendency prevails and a large number of mono‐sequences are formed; further up to f1 = 0.8, the monomer unit of MTMP with the sequence of one unit is interspersed among the chain of MMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
For the synthesis of polymethylmethacrylate, tetraphenyl biphosphine (TPhBP) with a thermally and photochemically unstable P‐P bond was employed. Under the influence of UV light, this bond split to two relatively stable biphenylphosphine radicals, which are able to react with the monomer. The resultant macroinitiators were isolated and were used for further polymerization with the same or another monomer to synthesize block‐copolymers. Controlled polymerization of methyl methacrylate with tetraphenyl biphosphine took place in the absence of oxygen by UV irradiation in THF solution. For MMA alone an insignificant portion photo‐ (0.3%) and thermal‐ (2%) polymerization were detected. Using selected quantity of the initiator, macroinitiators with predicted molecular weight as well as block‐copolymers were synthesized. The macroradicals were terminated by primary ‐PPh 2 radicals, by chain transfer to initiator and by the combination of two macroradicals. We determined chain end groups by nuclear magnetic resonance spectroscopy (NMR) and the relative molecular weights of the polymers by gel permeation chromatography (GPC). The molecular weights were calculated using the 1H NMR spectra from the ratio between the end groups signals and signals of the chain and were compared to GPC measurements. The calculated and observed molecular weights were in good agreement. At the lower concentration of initiator the molecular weight increased with conversion, while at the higher initiator concentration the molecular weight decreased with increasing conversion which could be ascribed to chain transfer to initiator. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
The graft copolymerization of methyl methacrylate onto natural rubber (NR) is investigated using potassium peroxydiphosphate as the initiator. The rate of grafting is determined by varying monomer concentration, peroxydiphosphate concentration, and temperature. The graft yield increased with an increase in monomer concentration up to 1.4082M/L and thereafter the graft yield decreases. The graft yield increases significantly with an increase of peroxydiphosphate concentration up to 150 X 10-1M/L and thereafter the graft yield decreases. The grafting reaction is temperature dependent. A suitable kinetic scheme is proposed and the rate equation is evaluated.  相似文献   

17.
This paper describes the homopolymerisations of isobornyl methacrylate (IBMA) and poly(ethylene glycol) methacrylate (PEGMA) in supercritical carbon dioxide (scCO2) and copolymerisation with methyl methacrylate (MMA). We have used two different stabiliser systems poly(dimethyl siloxane) monomethylacrylate (PDMS-MMA) and Krytox 157FSL, both of which have been shown previously to be highly effective stabilisers for dispersion polymerisation in scCO2. The effect of initiator concentration and copolymer composition is studied. For the copolymerisation of IBMA and MMA, under optimised conditions it is possible to form discrete particles with diameters in the range 1.4-3.6 μm. The PDMS-MMA macromonomer was found to be less effective as a stabiliser, causing particle aggregation due to the low solubility of this stabiliser in the monomers. The copolymers of PEGMA and MMA are also studied. The materials have interesting solubility properties with a transition in solubility from aqueous to organic media on increasing the MMA content.  相似文献   

18.
Nuclear magnetic resonance (NMR) analysis of the 13C‐labeled chain ends of polystyrene, polyMMA, and styrene‐MMA copolymers prepared by polymerizations initiated using 13C‐labeled‐phenacyl radicals were investigated. The phenacyl radicals were generated by anaerobic oxidation of acetophenone‐methyl‐13C using a Cu(II) octanoate‐pyridine complex in the presence of triethylamine and triphenylphosphine. NMR analysis of the 13C‐labeled chain ends of these polymers afforded insight into the initiation mechanism. In copolymerization experiments using 13C‐labeled acetophenone initiator, the NMR spectra provided evidence that the phenacyl radical reacts 2.7 times faster with styrene than with MMA. The resonances of the labeled phenacyl carbons also showed that the sequence and stereosequence distributions of monomer units at the chain ends are nearly the same as those that prevail along the polymer chains. Styrene–styrene, styrene–MMA, and MMA–styrene enchainments at the chain ends are equally likely to have meso (erythro) or racemic(threo) configurations but the ratio of meso to racemic MMA‐MMA enchainments is ~ 3/7. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2347–2356, 2008  相似文献   

19.
Cellulose‐based macroinitiators with predetermined number of initiation sites were synthesized by acylation of microcrystalline cellulose AVICEL PH‐101 with 2‐bromoisobutyryl bromide under homogeneous reaction conditions in the N,N‐dimethylacetamide/LiCl solvent system. The influence of different methods of cellulose activation on acylation efficiency and reproducibility was investigated. Best results were obtained using thermal activation under reduced pressure or the newly introduced protocol based on solvent exchange to 1,4‐dioxane. Prepared macroinitiators were used for grafting with styrene and methyl methacrylate (MMA) using optimized atom transfer radical polymerization reaction conditions to achieve well‐controlled polymerizations with high initiation efficiency. For MMA grafting, the initiation efficiency was shown to be dependent on certain reaction conditions, such as type of solvent, monomer concentration, or the presence of a sacrificial initiator. In addition, single‐electron transfer living radical polymerization with Cu(0) as the catalyst was used for the first time to prepare cellulose‐graft‐polystyrene and cellulose‐graft‐poly(MMA) copolymers in a homogeneous phase. In summary, homogeneous reaction conditions, stoichiometric control in the preparation of macroinitiators, and controlled grafting jointly allowed for an extensive control of copolymers architecture, that is, density of grafting, composition, and molecular parameters of grafts. Moreover, some of the prepared copolymers were characterized by static and dynamic light scattering and microscopic techniques (transmission electron microscopy and atomic force microscopy). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Summary Grafting ofmethyl methacrylate (MMA) on radiation crosslinked natural rubber (NR) film has been investigated by mutual radiation grafting. The effect of experimental parameters like radiation dose, dose-rate, additives like acids and inorganic salts, solvents, monomer concentration, cross-linking density of the natural rubber film on the grafting extent has been studied.From the kinetic studies, a kinetic equation showing almost parabolic and linear dependence of grafting on concentration and dose rate, respectively, was deduced.Preliminary thermal stability studies of grafted films indicated that grafting of MMA does not enhance the thermal stability of NR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号