首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The ceric ion-initiated graft copolymerization of methyl methacrylate onto wood cellulose was found to depend on the concentrations of initiator, monomer, and cellulose. The structure of cellulose—methyl methacrylate graft copolymers was studied by hydrolyzing away the cellulose backbone to isolate the grafted poly(methyl methacrylate) branches. The molecular weights and molecular weight distributions of the grafted poly(methyl methacrylate) were determined by using gel-permeation chromatography. The number-average (M?n) molecular weights ranged from 36 000 to 160 000 and the polydispersity ratios (M?w/M?n) varied from 4.0 to 7.0. The grafting frequency or the number of poly(methyl methacrylate) branches per cellulose chain calculated from the per cent grafting and molecular weight data varied from 0.38 to 3.2. The structure of cellulose—methyl methacrylate graft copolymers and the effect of stepwise addition of initiator on the structure are discussed.  相似文献   

2.
The present report describes the synthesis of a densely grafted copolymer consisting of a rigid main chain and flexible side chains by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from an ATRP initiator‐bearing poly(phenylacetylene) [poly(BrPA)]. Poly(BrPA) was obtained by the polymerization of 4‐ethynylbenzyl‐2‐bromoisobutyrate using [Rh(NBD)Cl]2 in the presence of Et3N. The 1H NMR spectrum showed that poly(BrPA) was in the cis‐transoid form. Upon heating at 30 °C for 24 h the cis‐transoid form was maintained. ATRP of MMA from the poly(BrPA) was carried out at 30 °C using CuX (X = Br, Cl) as the catalyst and N,N,N′,N′,N′‐pentamethyldiethylenetriamine as the ligand, and the resulting graft copolymers were investigated with 1H NMR and SEC. To analyze the graft structure in more detail, the graft copolymers were hydrolyzed with KOH and the resultant poly(MMA) part was investigated with 1H NMR and SEC. The polydispersity indexes of 1.25–1.45 indicated that the graft copolymers have well‐controlled side chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6697–6707, 2006  相似文献   

3.
Model graft copolymers were synthesized by grafting acrylamide onto dextran (Mw = 500,000) utilizing an initiation method in which a Ce(IV)/HNO3 solution was added to the dextran solution in order to allow coplexation prior to monomer addition. Three synthetic reaction parameters were optimized on the basis of conversion and solution viscosity: monomer concentration, dextran concentration, and nitric acid concentration. Molar ratios of [Ce(IV)]/[dextran] were changed systematically to affect the number and length of the acrylamide grafts. The number of grafting sites and graft chain lengths, determined by selective hydrolysis of the carbohydrate backbone, were in good agreement with those theortically predicted from knowledge of initiation efficiency and monomer conversion. Rheological studies of the model graft copolymers were conducted in aqueous solutions as a function of temperature, added salt, and copolymer concentration.  相似文献   

4.
This article reports the synthesis of the block and graft copolymers using peroxygen‐containing poly(methyl methacrylate) (poly‐MMA) as a macroinitiator that was prepared from the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in the presence of bis(4,4′‐bromomethyl benzoyl peroxide) (BBP). The effects of reaction temperatures on the ATRP system were studied in detail. Kinetic studies were carried out to investigate controlled ATRP for BBP/CuBr/bpy initiating system with MMA at 40 °C and free radical polymerization of styrene (S) at 80 °C. The plots of ln ([Mo]/[Mt]) versus reaction time are linear, corresponding to first‐order kinetics. Poly‐MMA initiators were used in the bulk polymerization of S to obtain poly (MMA‐b‐S) block copolymers. Poly‐MMA initiators containing undecomposed peroygen groups were used for the graft copolymerization of polybutadiene (PBd) and natural rubber (RSS‐3) to obtain crosslinked poly (MMA‐g‐PBd) and poly(MMA‐g‐RSS‐3) graft copolymers. Swelling ratio values (qv) of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H NMR), gel‐permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1364–1373, 2010  相似文献   

5.
In this work, we used Diels–Alder click reaction for the preparation of various types of aliphatic polycarbonates (PCs). We first prepared a novel anthracene‐functionalized cyclic carbonate monomer, anthracen‐9‐ylmethyl 5‐methyl‐2‐oxo‐1,3‐dioxane‐5‐carboxylate (2), followed by ring‐opening polymerization of this monomer to prepare PC with pendant anthracene groups (PC‐anthracene) using 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU)/1‐(3,5‐bis(trifloromethyl)phenyl)‐3‐cyclohexylthiourea (TU) as the catalyst and benzyl alcohol as the initiator in CH2Cl2 at room temperature. Subsequently, the resulting PC‐anthracene (Mn,TDGPC = 6000 g/mol, Mw/Mn = 1.22) was grafted with a linear α‐furan protected‐maleimide terminated‐poly(methyl methacrylate) (PMMA‐MI) (Mn,GPC = 3100 g/mol, Mw/Mn = 1.31), or poly(ethylene glycol) (PEG‐MI) (Mn,GPC = 550 g/mol, Mw/Mn = 1.09), or a mixture of PMMA‐MI and PEG‐MI to yield well‐defined PC graft or hetero graft copolymers, PC‐g‐PMMA (Mn,TDGPC = 59000 g/mol, Mw/Mn = 1.22) or PC‐g‐PEG, or PC‐g‐(PMMA)‐co‐PC‐g‐(PEG) (Mn,TDGPC = 39900 g/mol, Mw/Mn = 1.16), respectively, using Diels–Alder click reaction in toluene at 110°C. The Diels–Alder grafting efficiencies were found to be over 97% using UV spectroscopy. Moreover, the structural analyses and the molecular weights of resulting graft copolymers were determined via 1H NMR and triple detection GPC (TD‐GPC), respectively. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
In this study, synthesis of poly(epichlorohydrin-g-methyl methacrylate) graft copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization was reported. For this purpose, epichlorohydrin was polymerized by using HNO3 via cationic ring-opening mechanism. A RAFT macroinitiator (macro-RAFT agent) was obtained by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin. The graft copolymers were synthesized using macro-RAFT agent as initiator and methyl methacrylate as monomer. The synthesis of graft copolymers was conducted by changing the time of polymerization and the amount of monomer-initiator concentration that affect the RAFT polymerization. The effects of these parameters on polymerization were evaluated via various analyses. The characterization of the products was determined using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared spectroscopy, gel-permeation chromatography, thermogravimetric analysis, elemental analysis, and fractional precipitation techniques. The block lengths of the graft copolymers were calculated by using 1H-NMR spectrum. It was observed that the block length could be altered by varying the monomer and initiator concentrations.  相似文献   

7.
Cellulose‐based macroinitiators with predetermined number of initiation sites were synthesized by acylation of microcrystalline cellulose AVICEL PH‐101 with 2‐bromoisobutyryl bromide under homogeneous reaction conditions in the N,N‐dimethylacetamide/LiCl solvent system. The influence of different methods of cellulose activation on acylation efficiency and reproducibility was investigated. Best results were obtained using thermal activation under reduced pressure or the newly introduced protocol based on solvent exchange to 1,4‐dioxane. Prepared macroinitiators were used for grafting with styrene and methyl methacrylate (MMA) using optimized atom transfer radical polymerization reaction conditions to achieve well‐controlled polymerizations with high initiation efficiency. For MMA grafting, the initiation efficiency was shown to be dependent on certain reaction conditions, such as type of solvent, monomer concentration, or the presence of a sacrificial initiator. In addition, single‐electron transfer living radical polymerization with Cu(0) as the catalyst was used for the first time to prepare cellulose‐graft‐polystyrene and cellulose‐graft‐poly(MMA) copolymers in a homogeneous phase. In summary, homogeneous reaction conditions, stoichiometric control in the preparation of macroinitiators, and controlled grafting jointly allowed for an extensive control of copolymers architecture, that is, density of grafting, composition, and molecular parameters of grafts. Moreover, some of the prepared copolymers were characterized by static and dynamic light scattering and microscopic techniques (transmission electron microscopy and atomic force microscopy). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber (NR) was carried out by supercritical carbon dioxide (scCO2) swelling polymerization with benzoyl peroxide (BPO) as an initiator. Fourier transform–infrared spectroscopy (FT–IR) was used to confirm the formation of graft copolymers with the characteristic bands of symmetric C?O and C? O? C stretching vibrations at 1728 cm?1 and 1147 cm?1, respectively. The effects of the rubber‐to‐monomer ratio, amount of initiator, reaction time, and pressure on the monomer grafting level (GL) and grafting efficiency (GE) were investigated, and the optimum conditions for the preparation of NR‐g‐MMA were found to be 70:30 of the rubber‐to‐monomer ratio, 1.2% of the initiator content, and the reaction pressure of 23 MPa for 6 h. The thermal behavior of the NR and the different NR/MMA molar ratio grafted copolymer samples was studied by differential scanning calorimetry (DSC). The observed glass transition temperature (Tg) was consistent with the GL. The tensile strength, modulus of elasticity, elongation at break, hardness, and oil resistance of graft copolymers were determined and compared with the values of NR and that of polymerization products prepared in traditional toluene solution. The results showed that the tensile strength, modulus of elasticity, hardness and oil resistance were greatly improved after modification in scCO2. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
One‐step synthesis of block‐graft copolymers by reversible addition‐fragmentation chain transfer (RAFT) and ring‐opening polymerization (ROP) by using a novel initiator was reported. Block‐graft copolymers were synthesized in one‐step by simultaneous RAFT polymerization of n‐butylmethacrylate (nBMA) and ROP of ε‐caprolacton (CL) in the presence of a novel macroinitiator (RAFT‐ROP agent). For this purpose, first epichlorohydrin (EPCH) was polymerized by using H2SO4 via cationic ring‐opening mechanism. And then a novel RAFT‐ROP agent was synthesized by the reaction of potassium ethyl xanthogenate and polyepichlorohydrin (poly‐EPCH). By using the RAFT‐ROP agent, poly[CL‐b‐EPCH‐b‐CL‐(g‐nBMA)] block‐graft copolymers were synthesized. The principal parameters such as monomer concentration, initiator concentration, and polymerization time that affect the one‐step polymerization reaction were evaluated. The block lengths of the block‐graft copolymers were calculated by using 1H‐nuclear magnetic resonance (1H NMR) spectrum. The block length could be adjusted by varying the monomer and initiator concentrations. The characterization of the products was achieved using 1H NMR, Fourier‐transform infrared spectroscopy, gel‐permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, elemental analysis, and fractional precipitation (γ) techniques. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2651–2659  相似文献   

10.
In another paper the radical polymerization of styrene in the presence of various chlorosilanes was investigated, and polystyrenes having chlorosilyl groups as endgroups were obtained. In the present work attempts were made to obtain polysiloxane styrene graft and block copolymers from chlorosilyl polystyrenes. Block copolymers were obtained with dichlorosilane and graft copolymers with tri- and tetrachlorosilanes. In the latter case the insoluble fractions increased, if a suitable stopper, such as butanol or trimethylchlorosilane [(CH3)3SiCl], was not used in the condensation reaction. Methyldichlorosilane was used for the preparation of the graft copolymer, because the Si? H bond was more effective than the Si? Cl bond for the chain transfer reaction.  相似文献   

11.
Abstract

Phenacyl dimethylsulfonium ylide complex of mercuric chloride (PDSY-HgCl2)-initiated radical copolymerization of styrene with methylmethacrylate (MMA) at 85 ± 0.1°C using dioxane as an inert solvent yields random copolymers as evidenced by NMR spectroscopy. The kinetic equation for the present system was Rp α [PDSY-HgCl2]0.5 [Sty]1.0 [MMA]1.0. The values of energy of activation (ΔE) and k2 p/k1 were 48.0 kJ mol?1 and 8.6 × 10?4 L mol?1 s?1, respectively. The mechanism of the reaction has also been proposed for the present system. The properties of copolymer were studied in the form of film. The film was highly absorptive for nitric acid but less absorptive for acetic acid. The film was water impermeable.  相似文献   

12.
4‐Methacryloyl‐2,2,6,6‐tetramethyl‐piperidine (MTMP) was applied as reactive hindered amine piperidine. Photo‐induced copolymerization of methyl methacrylate (MMA, M1) with MTMP (M2) was carried out in benzene solution at ambient temperature. The reactivity ratios for these monomers were measured by running a series of reactions at various feed ratios of initial monomers, and the monomer incorporation into copolymer was determined using 1H NMR. Reactivity ratios of the MMA/MTMP system were measured to be r1 = 0.37 and r2 = 1.14 from extended Kelen‐Tüdos method. The results show that monomer MTMP prefers homopolymerization to copolymerization in the system, whereas monomer MMA prefers copolymerization to homopolymerization. Sequence structures of the MMA/MTMP copolymers were characterized using 1H NMR. The results show that the sequence structure for the main chain of the MMA/MTMP copolymers is mainly composed of a syndiotactic configuration, only with a little heterotactic configuration. Three kinds of the sequences of rr, rr′, and lr′ in the syndiotactic configuration are found. The sequence‐length distribution in the MMA/MTMP copolymers is also obtained. For f1 = 0.2, the monomer unit of MMA is mostly separated by MTMP units, and for f1 = 0.6, the alternating tendency prevails and a large number of mono‐sequences are formed; further up to f1 = 0.8, the monomer unit of MTMP with the sequence of one unit is interspersed among the chain of MMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The graft copolymerization of 4-vinylpyridine was carried out on mercerized cellulose and partially carboxymethylated cellulose (PCMC) using eerie ammonium nitrate (CAN) as the initiator. the grafting parameters (grafting efficiency (GE), graft yield (G), and total conversion (C1)) were studied as a function of CAN concentration. It was shown that by increasing the CAN concentration, G and C, reached a maximum. the graft yields for PCMC were significantly higher than those for mercerized cellulose. the largest GE values appeared for PCMC and mercerized cellulose at low and high CAN concentrations, respectively. the Ce(IV) consumption during grafting increased with rising concentration of CAN, and it was greater in the case of PCMC than of mercerized cellulose. After acid hydrolysis of the polysaccharide backbone, the average molecular weight of grafts was determined viscometrically. Molecular weight decreased with initiator concentration. Graft frequency (GF), on the other hand, increased with CAN concentration. GF for PCMC was higher than that for mercerized cellulose. Ce(IV) consumption increased with CAN concentration and it was lower for mercerized cellulose than that consumed during grafting on PCMC. After that, the effect of CAN concentration on the graft copolymerization onto PCMC was examined while the total nitrate ion concentration was maintained constant at 1.59 M by addition of sodium nitrate. Maximum G, C1 and Ce(IV) consumption were higher than in the previous case.  相似文献   

14.
Copolymerization of fullerene (C60) with methyl methacrylate (MMA) was carried out using triphenylbismuthonium ylide (abbreviated as Ylide) as a novel initiator in dioxan at 60°C for 4 h in a dilatometer under a nitrogen atmosphere. The reaction follows ideal kinetics: Rp∝ [Ylide]0.5[C60]?1.0[MMA]1.0. The rate of polymerization increases with an increase in concentration of initiator and MMA. However, it decreases with increasing concentration of fullerene due to the radical scavenging effect of fullerene. The overall activation energy of copolymerization was estimated to be 57 KJ mol?1. The fullerene-MMA copolymers (C60-MMA) were characterized by FTIR, UV–Vis, NMR and GPC analyses.  相似文献   

15.
Photoinduced atom transfer radical polymerizations (ATRP) of t‐butyl methacrylate (BMA) were carried out, initiated by model initiator benzyl N,N‐diethyldithiocarbamate (BDC) in the presence of CuCl/bipyridine (bpy) under UV irradiation. We performed the first‐order time‐conversion plots in this polymerization system, and the straight line in the semilogarithmic coordinates indicated a first‐order in the monomer. The molecular weight of poly(t‐butyl methacrylate) (PBMA) increased in direct proportion to monomer conversion. The molecular weight distribution (Mw/Mn) of PBMA was about 1.3. The initiator efficiency, f, was close to 1.0, which indicated that no side reactions occurred. A copper complex, CuCl/bpy, reversibly activated the dormant polymer chains via a N,N‐diethyldithiocarbamate (DC) transfer reaction such as Cu(DC)Cl/bpy, and it was dynamic equilibrium that was responsible for the controlled behavior of the polymerization of BMA. On the basis of this information, we established a preparation method of nanocylinders consisting of graft block copolymers by grafting from photoinduced ATRP of multifunctional polystyrene having DC pendant groups with vinyl monomers [first monomer, BMA; second monomer, styrene or methyl methcrylate (MMA)]. We have carried out the characterization of such nanocylinders in detail. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 63–70, 2005  相似文献   

16.
Using potassium diperiodatonickelate (Ni (IV)) as an efficient initiator, the graft copolymerization of methyl acrylate (MA) onto organophilic montmorillonite (OMMT) was successfully performed in an alkaline medium. Three grafting parameters were systematically evaluated as functions of the temperature, the initiator concentration, reaction time, pH value, and the ratio of MA to OMMT substrate. The structure of the titled graft copolymers (OMMT‐g‐PMA) were confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and thermo‐gravimetric analysis (TGA). It was found that Ni (IV) was a highly efficient initiator for graft copolymerization of the MA onto OMMT, i.e., grafting efficiency is as high as 95% and grafting percentage can be facilely controlled within 700% in this study. In addition, the highest grafting efficiency and grafting percentage were obtained when temperature adopted was over 40°C and pH was about 10.3. A single‐electron‐transfer mechanism was proposed to illustrate the formation of radicals and the initiation reaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A straightforward strategy is proposed for the synthesis of novel, amphiphilic block–graft MPEG‐b‐(PαN3CL‐g‐alkyne) degradable copolymers. First, the ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) was initiated by hydroxy‐terminated macroinitiator monomethoxy poly(ethylene glycol) (MPEG) with SnOct2 as the catalyst. In a second step, pendent chlorides were converted into azides by the reaction with sodium azide. Finally, various kinds of terminal alkynes were reacted with pendent azides by copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition, and thus a “click” reaction. These copolymers were characterized by differential scanning calorimetry (DSC), 1H NMR, IR, and gel permeation chromatography. By fixing the length of the MPEG block and increasing the length of PαClCL (or PαN3CL) block, an increase tendency in Tgs was observed. However, the copolymers of MPEG‐b‐PαClCL and MPEG‐b‐PαN3CL were semicrystalline when the Mn of MPEG was above 2000 g mol?1. The block–graft copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 1.4–12.0 mg L?1 depending on the composition of polymers. The lengths of hydrophilic segment influence the shape of the micelle. The mean hydrodynamic diameters of the micelles from dynamic light scattering were in the range of 90–160 nm. In vitro hydrolytic degradation of block–graft copolymers is faster than the corresponding block copolymers. The drug entrapment efficiency and the drug loading content of micelles depending on the composition of block–graft polymers were described. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4320–4331, 2008  相似文献   

18.
Multicentered initiators for the controlled (pseudoliving) radical polymerization are synthesized via polymer analog transformation of hydroxyl-containing polyimides based on o-aminophenols. Conditions providing variations in the degree of functionalization of polyimides by initiating 2-bromoisobutyrate groups are determined, and optimum conditions for the preparation of macroinitators containing the above groups in each repeat polyimide unit are found. Via the method of controlled radical polymerization with the atom transfer on multicentered macroinitiators in the presence of complexes of univalent copper halides, graft copolymers of poly(methylmethacrylate) on polyimide backbone are obtained. Molecular-mass characteristics of graft copolymers are studied via multiple-detection size-exclusion liquid chromatography. Preparation of graft copolymers (polymer brushes) with a homogeneous grafting density and a homogeneous length of side chains necessitates grafting of the side chain on the polyimide initiator, which contains initiating groups in each repeat unit.  相似文献   

19.
Amphiphilic graft copolymers were prepared via the radical copolymerization of poly(ethylene oxide) (PEO) macromonomers with fluorocarbon or hydrocarbon acrylates in toluene with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. 1H NMR spectroscopy confirmed that the composition of the graft copolymers corresponded well to the monomer feed. For gel electrolytes prepared from the amphiphilic copolymers, the nature of the ionophobic parts of the amphiphilic graft copolymers had a great influence on the ion conductivity. Gel electrolytes based on graft copolymers containing fluorocarbon side chains showed significantly higher ion conductivity than electrolytes based on graft copolymers containing hydrocarbon groups. The ambient‐temperature ion conductivity was about 2.6 mS/cm at 20 °C for a gel electrolyte based on an amphiphilic graft copolymer consisting of an acrylate backbone carrying PEO and fluorocarbon side chains. Corresponding gels based on graft copolymers with PEO side chains and hydrocarbon groups showed an ambient‐temperature ion conductivity of about 1.2 mS/cm. The gel electrolytes contained 30 wt % copolymer and 70 wt % 1 M LiPF6 in an ethylene carbonate/γ‐butyrolactone (2/1 w/w) mixture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2223–2232, 2001  相似文献   

20.
Glycerol 1,3-diglycerolate diacrylate (GDD) was graft copolymerized onto poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate) P(3HO-co-3HHX) to render the latter more hydrophilic. Grafting of P(3HO-co-3HHX) backbone was performed using benzoyl peroxide as free radical initiator in homogenous acetone solution. The graft copolymer of P(3HO-co-3HHX)-g-GDD was characterized using spectroscopic and thermal methods. The presence of GDD monomer in the grafted P(3HO-co-3HHX) materials linked through covalent bond was indicated by spectroscopic analyses. Different parameters affecting the graft yield viz. monomer concentration, initiator concentration, temperature and reaction time were also investigated. Water uptake measurement showed that P(3HO-co-3HHX)-g-GDD copolymer became more hydrophilic as the GDD concentration in the copolymer increased. Introduction of hydroxyl groups via grafted GDD monomers improved the wettability and imparted amphiphilicity to the graft copolymer, thus potentially improving their facility for cellular interaction. Thermal stability of grafted copolymer reduced with increased grafting yield. The activation energy, Ea, for the graft copolymerization was calculated at ~ 51 kJ mol?1. Mechanism of grafting reaction was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号