首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A custom-built adhesion-testing device (ATD) is described in this paper, which was developed to study energetics of various solid (polymeric) interfaces. A review is also given of the main techniques of adhesion and adherence measurements, including non-destructive and destructive methods, with major emphasis on the evolution and applications of contact mechanics techniques. Using the Johnson-Kendall-Roberts (JKR) theory of contact mechanics in the elastic deformation regime, the interfacial energy of solid surfaces can be obtained by measuring the contact radius, loading force, and vertical displacement between an (elastic) sphere (lens) and a flat surface (one of which, or both, coated with the sample of interest). The parameters needed for JKR analyses were determined by our custom-built device. Based on the JKR theory, the values of work of adhesion, combined elastic modulus and interfacial energy were determined from the loading and unloading curves on poly(dimethylsiloxane)-poly(dimethylsiloxane) (PDMS) systems. Cumulative adhesion hysteresis and elastic modulus were also calculated. The results obtained agree well with literature data measured by different methods. These measurements on compliant PDMS-PDMS model systems can also serve as validation and verification of the adhesion-testing devices described in this study.  相似文献   

2.
Reduction of hydrophobic interaction in water is important in biological interfaces. In our previous work, we have found that poly(styrene- b-triethylene glycol methyl ether methacrylate) (PS-PME3MA) segregates the PME3MA block to the surface in hydrophobic environment, such as in air or in a vacuum, and shows remarkable resistance against adsorption or adhesion of proteins, platelets, and cells in water. In this paper, we report that atomic force microscopy (AFM) with hydrophobic probes can directly monitor the reduced hydrophobic interaction of the PS surfaces modified by poly(styrene- b-origoethylene glycol methyl ether methacrylate) (PS-PME NMA), where N is the number of ethylene glycol units. The pull-off forces between the hydrophobic probes that are coated with octyltrichlorosilane (OLTS) and the PS-PME NMA modified polystyrene (PS) surfaces in water were measured. The absolute spring constants and tip-curvatures of the AFM cantilevers were measured to compute the work of adhesion by the Johnson, Kendall, and Roberts (JKR) theory, which relates the pull-off force at which the separation occurs between a hemisphere and a plane to the work of adhesion. The hydrophobic interactions between the hydrophobic tip and polymer surfaces in water were greatly reduced with the segregated PME NMA blocks. The hydrophobic interactions decrease with increasing N of the series of PS-PME NMA and show a correlation with the amount of protein adsorbed.  相似文献   

3.
Contact lens induced microbial keratitis results from bacterial transmission from one surface to another. We investigated the adhesion forces of Pseudomonas aeruginosa, Staphylococci and Serratia to different contact lenses, lens cases and corneal surfaces using AFM, and applied a Weibull analysis on these adhesion forces to calculate bacterial transmission probabilities from lens case to corneas with a contact lens as an intermediate. Also a new surface thermodynamic parameter was introduced, the interfacial free energy of transmission, which in essence compares the interfacial free energies of bacterial adhesion, calculated from measured contact angles with liquids on the donating and receiving surfaces in the transmission process. Bacterial adhesion forces were generally strongest among all eight strains for the lens case (-6.5 to -12.0 nN) and corneas (-3.5 to -11.5 nN), while contact lenses (-0.6 to -13.1 nN) exerted slightly smaller adhesion forces. Consequently, bacterial transmission from lens case to contact lens yielded a smaller contribution in the final transmission than from contact lens to cornea. Bacterial transmission probabilities as derived from force analyses were higher when the interfacial free energies of transmission were more negative, which is in line with surface thermodynamic principles. Therewith this parameter could provide useful in analyzing other bacterial transmission phenomena between donating and receiving surfaces as well.  相似文献   

4.
The effect of phase state of self-assembled monolayers (SAMs) on adhesion behavior was studied using a combination of atomic force microscopy (AFM) and Johnson-Kendall-Roberts (JKR) methods. The phase state of SAMs was controlled by adjusting the reaction temperature. Order-to-disorder structural transitions in monolayers of n-alkyltrichlorosilanes resulted in dramatic increases in adhesion force and adhesion hysteresis, which represents the first report of alterations in adhesion properties due to phase changes of monolayers without any effect of chain length and surface heterogeneity. This increase in mechanical deformation of the disordered monolayer is understood to be caused by increases in (1) molecular contact between the AFM tip and a disordered monolayer due to the more deformable state of the latter and (2) monolayer deformation during unloading by the JKR probe lens. Adhesion hysteresis was found to have greater sensitivity toward the unloading rate for disordered monolayers. The occurrence of maximum hysteresis at faster rates proves that monolayer chain mobility increases with structural disorder, resulting in increased mechanical deformation.  相似文献   

5.
Adhesion of micron-scale probes with model poly(dimethylsiloxane), PDMS, elastomers was studied with a depth-sensing nanoindenter under oscillatory loading conditions. For contacts between diamond indenters (radius R = 5 or 10 microm) and PDMS, force-displacement curves were highly reversible and consistent with Johnson-Kendall-Roberts (JKR) behavior. However, our experiments have revealed striking differences between the experimental measurements of tip-sample interaction stiffness and the theoretical JKR stiffness. The measured stiffness was always greater than zero, even in the reflex portion of the curve (between the maximum adhesive force and release), where the JKR stiffness is negative. This apparent paradox can be resolved by considering the effects of viscoelasticity of PDMS on an oscillating crack tip in a JKR contact. Under well described conditions determined by oscillation frequency, sample viscoelastic properties, and the Tabor parameter (with variables R, reduced elastic modulus, E*, and interfacial energy, deltagamma), an oscillating crack tip will neither advance nor recede. In that case, the contact size is fixed (like that of a flat punch) at any given point on the load-displacement cycle, and the experimentally measured stiffness is equal to the equivalent punch stiffness. For a fixed oscillation frequency, a transition between JKR and punch stiffness can be brought about by an increase in radius of the probe or a decrease in PDMS modulus. Additionally, varying the oscillation frequency for a fixed E*, R, and deltagamma also resulted in transition between JKR and punch stiffness in a predictable manner. Comparisons of experiments and theory for an oscillating viscoelastic JKR contact are presented. The storage modulus and surface energy from nanoscale JKR stiffness measurements were compared to calculated values and those measured with conventional nanoindentation and JKR force-displacement analyses.  相似文献   

6.
Adhesive and frictional forces between surfaces modified with self-assembled monolayers (SAMs) and immersed in solvents were measured with chemical force microscopy as functions of surface functionality and solvent. Si/SiO2 substrates were modified with SAMs of alkylsiloxanes (SiCl3(CH2)n-X), and gold-coated AFM tips were modified with SAMs of alkylthiolates (HS-(CH2)n-X). SAMs of alkylsiloxanes terminated in a methyl or oxidized vinyl group; SAMs of alkanethiolates terminated in a methyl or carboxyl group. Adhesive and frictional forces were measured in hexadecane, ethanol, 1,2-propanediol, 1,3-propanediol, and water. The work of adhesion (W) was calculated with the Johnson-Kendall-Roberts theory of adhesive contact. The JKR values agreed well with values derived from the Fowkes-van Oss-Chaudhury-Good surface tension model and from contact angle results. Calculated values of W for all combinations of contacting surfaces and solvents spanned two orders of magnitude. W correlated with the surface tension of the solvent for hydrophobic/hydrophobic interactions; hydrophilic/hydrophilic and hydrophobic/hydrophilic interactions were more complex. Friction forces were fit to a modified form of Amonton's law. For any solvent, friction coefficients were largest for the hydrophilic/hydrophilic contacting surfaces. The friction coefficient for any contacting pair was largest in hexadecane. In polar solvents, friction coefficients scaled with solvent polarity only for hydrophobic/hydrophobic contacting pairs. Copyright 1999 Academic Press.  相似文献   

7.
The surface and interfacial energies of polymers are measured using the JKR-type experiments. A novel method has been developed to prepare samples of glassy polymers for adhesion measurements. A thin layer of a polymer is coated on the surface of an O2-plasma modified cross-linked poly(dimethylsiloxane) [PDMS] spherical cap resulting in the formation of a composite. Using the JKR theory, the surface energies of polystyrene [PS] and poly(methyl methacrylate) [PMMA] are determined from the measurements of the contact radius as a function of applied load. The results of the JKR-type experiments are compared to adhesion measurements done using the surface forces apparatus (SFA). Adhesion hysteresis was observed for PS-PS contact as well as PMMA-PMMA contact. However, no hysteresis was observed for PDMS-PDMS, PDMS-PS, and PDMS-PMMA contacts. The exact origin of the hysteresis is not clear at present. The current evidence suggests that hysteresis is due to rearrangement of the interface during contact.  相似文献   

8.
The adhesive properties of untreated and corona treated polypropylene (PP) films were studied in polar (water) and nonpolar (hexadecane) liquid medium by using chemical force microscopy. A gold-coated colloidal probe was sequentially modified with self-assembled monolayers (SAMs) of omega-functionalized alkanethiols. The same colloidal probe was used for the force measurements, to avoid influence of determination accuracy of the spring constant and sphere radius on the obtained results. The thermodynamic work of adhesion was determined from the measured pull-off force using the Johnson-Kendall-Roberts (JKR) adhesion theory. Rabinovich's model was applied for the consideration of an effect of roughness when calculating the work of adhesion. It was found that the work of adhesion correlates with the hydrophilic properties of the PP surface and SAMs as well as with the polarity of the liquid medium. The observed correlations agree well with those found for the work of adhesion calculated from contact angle measurement.  相似文献   

9.
In many medical and industrial applications, some strategies are needed to control the adhesion forces between the materials, because surface forces can activate or hinder the function of the device. All actual surfaces present some levels of roughness and the contact between two surfaces is transferred by the asperities on the surfaces. The force of the adhesion, which depends on the operating situations, can be influenced by the contact region. The aim of the present study is to predict the adhesion force in MEMS surfaces using the JKR and DMT models. The surfaces of the coating material in this research consisted of the single-layer coating of Gold and Silver, and the double-layer coating of TiO2/Gold and TiO2/Silver on the silicon (100) substrates. The depositing was done by the thermal evaporation method. The results showed that the double-layer coating developed by the new deposition method helped the reduction of the adhesion forces between the probe tip and the specimen surface. The predicted adhesion forces between the probe and the specimens with DMT and JKR models were compared with the experimental results. For all specimens, the simulated data by applying the JKR theory were in a good agreement with the adhesion force experimental values.  相似文献   

10.
The atomic force microscopy (AFM) colloidal probe technique was used to study the effect of oxyethylene dodecyl ethers, C12En (n = 1-7), on interactions between hydrophobic polyethylene (PE) surfaces in aqueous solutions. Long-range (colloidal) and contact (pull-off) forces were measured between 10 to 20 microm PE spheres and a flat PE surface at concentrations of surfactant of 1 x 10(-6) and 1 x 10(-4) M. The surface tension of the surfactant solutions and contact angles at PE surfaces were also studied. The influence of the number of oxyethylene groups in the surfactant molecule was examined. Initially, long-range attractive (hydrophobic) forces between the PE surfaces were observed that decreased in range and magnitude with an increase in the number of oxyethylene groups in 1 x 10(-4) M solutions. Above four oxyethylene groups per molecule, repulsive forces were observed. The measured pull-off force between PE surfaces decreased monotonically from approximately 500 mJ/m2 for C12E1 to 150 mJ/m2 for C12E7. The interfacial energy was calculated on the basis of the JKR model, taking into account long-range forces operating outside the contact area. The interfacial energies decreased from 43-47 mJ/m2 for PE-water and PE-C12E1 (1 x 10(-4) M) interfaces to approximately 18 mJ/m2 for PE-C12E7 (1 x 10(-4) M). The interfacial energy was also calculated from measured contact angles and surface tensions using Neumann's equation of state and Young's equation. A similar relationship between interfacial energy and the number of oxyethylene groups was observed on the basis of contact and surface tension measurements. However, interfacial energy values were smaller, within 15-20 mJ/m2, than those calculated from AFM pull-off force measurements.  相似文献   

11.
An analytical model based on the Johnson–Kendall–Roberts (JKR) theory of adhesion was used to study the contact mechanics and adhesion of periodically rough surfaces. The relation of the applied load to the contact area and the work of adhesion W was found in closed form for arbitrary surface profiles. Our analysis showed that when the parameter [where α* is a numerical constant of order one, β is the aspect ratio of a typical surface profile (or asperity), and ρ is the number of asperities per unit length], the surfaces will jump into contact with each other with no applied load, and the contact area will continue to expand until the two surfaces are in full contact. The theory was then extended to the non‐JKR regime in which the region where the surface forces act is no longer confined to a small region near the contact zone. Exact solution was also obtained for this case. An exact analysis of the effect of entrapped air on the mechanics of adhesion and contact was also enacted. The results showed that interaction between asperities should be taken into consideration in contact‐mechanics models of adhesion or friction. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1195–1214, 2001  相似文献   

12.
The JKR method has been applied for studying adhesion between poly(dimethylsiloxane) (PDMS) caps and Langmuir–Blodgett cellulose surfaces including the substrate, hydrophobized mica, and two flat mineral surfaces, bare mica and glass. The self-adhesion of PDMS caps and oxidized PDMS caps are included as a reference to compare with literature data. The results of the measurements have been compared with previous studies using the surface force apparatus and similar systems. A satisfactory agreement is obtained for simple systems showing no, or very limited, hysteresis between loading and unloading curves. In several cases, however, a large hysteresis is found between loading and unloading curves, with a larger adhesion measured from the pull-off force than from the JKR-curve determined on loading. This is, for instance, the case for PDMS against cellulose. The situation is analogous to that found in wetting studies showing a large hysteresis between advancing and receding contact angles.  相似文献   

13.
The adhesion between a silicon tie-coat and epoxy primers, used in marine coating systems, has been studied in this work. Six epoxy coatings (with varying chain lengths of the epoxy resins), some of which have shown problems with adhesion to the tie-coat during service life, have been considered. The experimental investigation includes measurements of the surface tension of the tie-coat and the critical surface tensions of the epoxies, topographic investigation of the surfaces of cured epoxy coatings via atomic force microscopy (AFM), and pull-off tests for investigating the strength of adhesion to the silicon/epoxy systems. Calculations for determining the roughness factor of the six epoxy coatings (based on the AFM topographies) and the theoretical work of adhesion have been carried out. The coating surfaces are also characterized based on the van Oss-Good theory. Previous studies on the modulus of elasticity of the polymers involved have also been considered. It was found that adhesion problems might be due to inadequate wetting, the significantly different topographies, and differences in the mechanical strengths of the epoxies. Acid-base interactions calculated from the van Oss-Good theory were found useful in explaining the enhanced adhesion for some epoxy/silicon surfaces.  相似文献   

14.
Wet and dry adhesion between dextran-coated surfaces were measured aiming to understand the influence of polymer compatibility. The wet adhesion measurements were performed using the atomic force microscope (AFM) colloidal probe technique whereas the dry adhesion measurements were performed using the micro adhesion measurement apparatus (MAMA). Two types of dextrans were used, one cationically modified dextran (DEX) and one that was both cationically and hydrophobically modified (HDEX), leading to three different combinations of polymer-coated surfaces; (1) DEX:DEX, (2) HDEX:DEX, and (3) HDEX:HDEX. DEX increased dry adhesion more than HDEX did, which likely is due to differences in the ability to form specific interactions, especially hydrogen bonding. HDEX gave strong wet adhesion, probably due to its poorer solvency, while DEX contributed to reducing the wet adhesion due to its hydrophilicity. All combinations showed a steric repulsion on approach in aqueous media. Furthermore, when HDEX was adsorbed on either or both surfaces a long range attractive force between the surfaces was detected outside this steric regime.  相似文献   

15.
This review links together for the first time both the practicalities of force measurement and the work carried out to date on force detection between polymeric surfaces in liquids using the atomic force microscope (AFM). Also included is some of the recent work that has been carried out between surfactant surfaces and biologically coated surfaces with the AFM. The emphasis in this review is on the practical issues involved with force measurement between these types of surfaces, and the similarities and irregularities between the observed types of forces measured. Comparison is made between AFM and surface force apparatus (SFA) measurements, as there is a much longer history of work with the latter. Results indicate that forces between the surfaces reviewed here are a complicated mixture of steric-type repulsion, conformational behaviour on separation and long-range attraction, which is often ascribed to 'hydrophobic' forces. The origin of this latter force remains uncertain, despite its almost ubiquitous appearance in force measurements with these types of surfaces.  相似文献   

16.
采用聚合和交联的SiO2有机/无机杂化溶胶作为基材, 通过与两性离子单体层之间的过渡层, 在紫外光作用下引发杂化溶胶和两性离子单体溶液中的双键反应, 使生成的杂化层在基材和表面的两性离子聚合物之间形成辅助性黏接作用, 从而在基材表面构筑两性离子水凝胶层. 通过傅里叶红外光谱(FTIR)、 原子力显微镜(AFM)和接触角测试等方法对所制备的两性离子水凝胶层和杂化层的表面进行了表征. 以空白玻璃片为对照样品, 以金黄色葡萄球菌和大肠杆菌为试验菌, 研究了用两性离子凝胶层修饰的玻璃表面的抗细菌黏附性能. 结果表明, 在SiO2杂化过渡层中引入线型-Si-(CH2)2-O-链段可有效提高杂化过渡层对基材的附着力, 并改善其柔韧性. 与对照样品相比, 用两性离子凝胶层修饰的玻璃表面具有优异的抗菌黏附性能.  相似文献   

17.
We have measured the rate at which adhesion develops between two surfaces that interact by hydrogen bonding. A poly(dimethylsiloxane) elastomer lens with a slightly oxidized surface was pushed against a polystyrene-based copolymer substrate that contained acid groups. The interaction was measured on both forming and breaking the contact using the JKR technique. The toughness of the joint, Gc, increased considerably with increasing acid content in the substrate while the apparent work of adhesion, W, measured while making the contact, decreased with increasing acid content. This decrease in W implies that the acid groups caused repulsion between the surfaces when they were not in contact, but the increase in Gc shows that they formed bonds after contact was made. The rate of increase of Gc with time was found to depend on the acid content in the substrate, but for moderate acid levels, Gc was found to saturate at values that varied approximately linearly with acid content. For 8% acid and 47% acid substrates, the rate of adhesion development over a period of 24 h could be fitted by a model assuming (i) the toughness increased linearly with areal density of bonds between the substrate and the elastomer and (ii) the rate of reaction between the substrate and the elastomer varied as the cube of the density of unreacted acid groups. This cube law may possibly be explained by the kinetics of motion of the elastomer chains on the substrate.  相似文献   

18.
This work presents atomic force microscopy (AFM) measurements of adhesion forces between polyamides, polystyrene and AFM tips coated with the same materials. The polymers employed were polyamide 6 (PA6), PA66, PA12 and polystyrene (PS). All adhesion forces between the various unmodified or modified AFM tips and the polymer surfaces were in the range -1.5 to -8 nN. The weakest force was observed for an unmodified AFM tip with a PS surface and the strongest was between a PS-coated tip and PS surface. The results point to both the benefits and drawbacks of coated-tip AFM force-distance measurements. Adhesion forces between the two most dissimilar (PA6-PS and PA66-PS) materials were significantly asymmetric, e.g., the forces were different depending on the relative placement of each polymer on the AFM tip or substrate. Materials with similar chemistry and intermolecular interactions yielded forces in close agreement regardless of placement on tip or substrate. Using experimental forces, we calculated the contact radii via four models: Derjaguin, Muller, and Toporov; Johnson, Kendall, and Roberts; parametric tip-force-distance relation; and a square pyramid-flat surface (SPFS) model developed herein. The SPFS model gave the most reasonable contact tip radius estimate. Hamaker constants calculated from the SPFS model using this radius agreed in both magnitude and trends with experiment and Lifshitz theory.  相似文献   

19.
The Johnson-Kendall-Roberts (JKR) theory of elastic contact, extended to take viscoelastic effects into account, is used to evaluate work of adhesion and modulus of elastomeric films. In this paper, we present a comparison of five approaches to analyze quasi-static and dynamic JKR force curve data obtained using instrumented indentation. The load-displacement experiments were performed using a 200-microm radius borosilicate glass sphere against poly(dimethyl siloxane) (PDMS). By applying a small oscillation to the tip during indentation, dynamic stiffness vs load data were also obtained for frequencies between 25 and 160 Hz. Direct curve fitting as well as simplified 2- and 3-point analysis methods were used to compare modulus values obtained from load-displacement and stiffness-load data. Fit methods not requiring determination of the initial point of tip-sample contact ("zero" displacement) provided modulus values closest to those obtained by direct curve fitting. The dynamic stiffness-load data revealed a frequency dependent modulus; load-displacement measurements obtained simultaneously were consistent with the relaxed, or low-frequency, modulus of the PDMS sample. These experiments demonstrate that both the frequency dependent and relaxed modulus can be obtained from a single experiment.  相似文献   

20.
研究了纳米银(AgNPs)在氨基注入氧化铟锡(ITO)薄膜表面的吸附.通过氨基注入的疗法得到了氨基功能化的ITO表面(NH2/ITO),并将纳米银直接吸附在NH2/ITO上得到纳米银修饰NH2/ITO基体(AgNPs/NH2/ITO).使用傅里叶红外光谱、X射线光电子能谱、原子力显微镜、扫描电镜、紫外可见光谱和电化学方法对AgNPs/NH2/ITO制备过程进行了表征.结果显示纳米银可在NH2/ITO表面高密度地吸附,并且纳米银有良好的电化学活性.这种不借助于有机连接分子吸附纳米银的方法为制备纳米银修饰材料提供了新的选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号