首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The classical solution for an isotropic elastic wedge loaded by uniform tractions on the sides of the wedge becomes infinite everywhere in the wedge when the wedge angle 2 equals , 2 or 2* where tan 2* = 2*. When the wedge is loaded by a concentrated couple at the wedge apex the solution also becomes infinite at 2 = 2*. A similar situation occurs when the wedge is anisotropic except that 2* is governed by a different equation and depends on material properties. Solutions which do not become infinite everywhere in the wedge are available for isotropic elastic wedges. In this paper we present solutions for the anisotropic elastic wedge at critical wedge angles. The main feature of the solutions obtained here is that they are in a real form even though Stroh's complex formalism is employed.  相似文献   

2.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

3.
The two-dimensional Navier–Stokes- model is considered on the torus and on the sphere. Upper and lower bounds for the dimension of the global attractors are given. The dependence of the dimension of the global attractors on is studied. Special attention is given for the limiting cases when 0, that is, when the Navier–Stokes- model tends to the Navier–Stokes equations, and to the case when .  相似文献   

4.
We consider a surface S = (), where 2 is a bounded, connected, open set with a smooth boundary and : 3 is a smooth map; let () denote the components of the two-dimensional linearized strain tensor of S and let 0 with length 0 > 0. We assume the the norm ,|| ()||0, in the space V0() = { H1() × H1() × L2(); = 0 on 0 } is equivalent to the usual product norm on this space. We then establish that this assumption implies that the surface S is uniformly elliptic and that we necessarily have 0 = .  相似文献   

5.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

6.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

7.
P. H. Ong 《Rheologica Acta》1970,9(2):299-305
Summary The dielectric properties of the composite system polyurethane-sodium chloride have been measured at frequencies between 10–4 Hz and 3 · 105 Hz in the temperature range from –150 °C up to +90 dgC. Three dielectric loss mechanisms have been found; they are indicated by 1, 2 and. The activation energy of the 1-transition is 35 kcal/mole, that of the-transition 6.7 kcal/mole. The 2-loss peak was only observed at frequencies of 103 Hz and higher, forming one broad peak with the 1-loss peak at lower frequencies. In the composite materials, the- and 2-loss peaks measured at fixed frequencies were found at the same temperature. The 2-loss peak, however, was shifted to a lower temperature, due to the sodium chloride filler. Comparison of experimental data of and tan with theoretical predictions concerning the dielectric properties of composite systems showed only partial agreement. The difference mainly consisted in. the temperature shift in the tan-peak of the 1-transition.
Zusammenfassung Die dielektrischen Eigenschaften des Verbundssystems Kochsalz-Polyurethankautschuk wurden im Frequenzgebiet zwischen 10–4 Hz und 3.105 Hz und im Temperaturbereich von –150 °C bis +90 °C gemessen. Es wurden drei dielektrische Verlustmaxima gefunden, die mit 1, 2 und angedeutet werden. Die Aktivierungsenergie des 1-Überganges beträgt 35 kcal/Mol, die des-Überganges 6.7 kcal/Mol. Das 2-Maximum konnte nur bei Frequenzen höher als 103Hz vom 1-Maximum gesondert erfaßt werden. Die Lage der 2- und-Maxima war vom Füllgrad unabhängig. Das 1-Maximum verschiebt sich mit steigendem Füllgrad zu niedrigeren Temperaturen. Die gemessenen Werte von und tan stimmen nur teilweise mit den Aussagen einer Theorie der dielektrischen Eigenschaften von Mischkörpern überein.
  相似文献   

8.
Die swell of filled polymer melts   总被引:1,自引:0,他引:1  
The Barus effect in polypropylene and polystyrene blended with a variety of fillers at various concentrations was investigated using a capillary extrusion rheometer. If the die swell is defined as the square of the ratio of the extrudate diameterd to the die diameterD, it is found to depend on the apparent shear stress W . Below a certain value of w the relation =B B A applies. The die swell, M , of a filled polymer depends on the type, size and volume fraction of the filler. In particular,A increases as the volume fraction increases and is largest for powders, smaller for flakes and smallest for fibres, whereasB shows the opposite trend but to a lesser extent.  相似文献   

9.
An algorithm is constructed for numerical determination of the flow parameters and coefficient of contraction of a jet in the case of irrotational lateral outflow of liquid from a semiinfinite stream through a nozzle of finite depth situated at an arbitrary angle to the mainstream flow. The solution is based on the use of N. E. Zhukovskii's method and the Schwarz-Christoffel formula. The results of calculations for a nozzle situated at an angle = /2 ± , where = /6, are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 162–164, January–February, 1977.  相似文献   

10.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

11.
At small flow rates, the study of long-wavelength perturbations reduces to the solution of an approximate nonlinear equation that describes the change in the film thickness [1–3]. Steady waves can be obtained analytically only for values of the wave numbers close to the wave number n that is neutral in accordance with the linear theory [1, 2]. Periodic solutions were constructed numerically for the finite interval of wave numbers 0.5n n in [4]. In the present paper, these solutions are found in almost the complete range of wave numbers 0 n that are unstable in the linear theory. In particular, soliton solutions of this equation are obtained. The results were partly published in [5].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 142–146, July–August, 1980.  相似文献   

12.
The stability of stationary traveling waves of the first and second families with respect to infinitesimal perturbations of arbitrary wavelength is subjected to a detailed numerical investigation. The existence of a unique region of stability of the first family is established for wave numbers (1, 1) corresponding to the optimal wave regime. There are several regions of stability of the second family ( k , k),k=2,3,..., lying close to the local flow rate maxima. In the regions of instability the growth rates of perturbations of the first family are several times greater than for the second family. This difference increases with increase in the Reynolds number. The calculations make it possible to explain a number of experimental observations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 33–41, May–June, 1989.The authors are grateful to V. Ya. Shkadov for his constant interest, and to A. G. Kulikovskii, A. A. Barmin and their seminar participants for useful discussions and suggestions.  相似文献   

13.
Two thermodynamical models of pseudoelastic behaviour of shape memory alloys have been formulated. The first corresponds to the ideal reversible case. The second takes into account the hysteresis loop characteristic of this shape memory alloys.Two totally independent techniques are used during a loading-unloading tensile test to determine the whole set of model parameters, namely resistivity and infrared thermography measurements. In the ideal case, there is no difficulty in identifying parameters.Infrared thermography measurements are well adapted for observing the phase transformation thermal effects.Notations 1 austenite 2 martensite - () Macroscopic infinitesimal strain tensor of phase - (2) f Traceless strain tensor associated with the formation of martensite phase - Macroscopic infiniesimal strain tensor - Macroscopic infinitesimal strain tensor deviator - f Trace - Equivalent strain - pe Macroscopic pseudoelastic strain tensor - x Distortion due to parent (austenite =1)product (martensite =2) phase transformation (traceless symmetric second order tensor) - M Total mass of a system - M() Total mass of phase - V Total volume of a system - V() Total volume of phase - z=M(2)/M Weight fraction of martensite - 1-z=M(1)/M Weight fraction of austenite - u 0 * () Specific internal energy of phase (=1,2) - s 0 * () Specific internal entropy of phase - Specific configurational energy - Specific configurational entropy - 0 f (T) Driving force for temperature-induced martensitic transformation at stress free state ( 0 f T) = T *Ts *) - Kirchhoff stress tensor - Kirchhoff stress tensor deviator - Equivalent stress - Cauchy stress tensor - Mass density - K Bulk moduli (K 0=K) - L Elastic moduli tensor (order 4) - E Young modulus - Energetic shear (0 = ) - Poisson coefficient - M s o (M F o ) Martensite start (finish) temperature at stress free state - A s o (A F o ) Austenite start (finish) temperature at stress free state - C v Specific heat at constant volume - k Conductivity - Pseudoelastic strain obtained in tensile test after complete phase transformation (AM) (unidimensional test) - 0 Thermal expansion tensor - r Resistivity - 1MPa 106 N/m 2 - () Specific free energy of phase - n Specific free energy at non equilibrium (R model) - n eq Specific free energy at equilibrium (R model) - n v Volumic part of eq - Specific free energy at non equilibrium (R L model) - conf Specific coherency energy (R L model) - c Specific free energy at constrained equilibria (R L model) - it (T) Coherency term (R L model)  相似文献   

14.
A new approach to full-field automated photoelasticity is presented in which a circular polariscope is used to enable the isochromatic phase value () to be determined unambiguously and without input of a known isochromatic value obtained using an auxiliary technique. Values of cos are obtained from light-field and dark-field images for three loads of small incremental steps. Using a relatively straight-forward procedure, ramped phase maps for are produced which can be unwrapped using conventional techniques. The resulting distribution of is then found absolutely using information provided by which is the incremental change in the isochromatic phase value between the load steps. The results obtained for disk-in-compression tests presented here in comparison with theoretical solutions demonstrate that the technique is both simple to use and very accurate. A similar approach may be adopted using three wavelengths instead of three load steps.  相似文献   

15.
Summary Let denote the congruence of null geodesics associated with a given optical observer inV 4. We prove that determines a unique collection of vector fieldsM() ( =1, 2, 3) and (0) overV 4, satisfying a weak version of Killing's conditions.This allows a natural interpretation of these fields as the infinitesimal generators of spatial rotations and temporal translation relative to the given observer. We prove also that the definition of the fieldsM() and (0) is mathematically equivalent to the choice of a distinguished affine parameter f along the curves of, playing the role of a retarded distance from the observer.The relation between f and other possible definitions of distance is discussed.
Sommario Sia la congruenza di geodetiche nulle associata ad un osservatore ottico assegnato nello spazio-tempoV 4. Dimostriamo che determina un'unica collezione di campi vettorialiM() ( =1, 2, 3) e (0) inV 4 che soddisfano una versione in forma debole delle equazioni di Killing. Ciò suggerisce una naturale interpretazione di questi campi come generatori infinitesimi di rotazioni spaziali e traslazioni temporali relative all'osservatore assegnato. Dimostriamo anche che la definizione dei campiM(), (0) è matematicamente equivalente alla scelta di un parametro affine privilegiato f lungo le curve di, che gioca il ruolo di distanza ritardata dall'osservatore. Successivamente si esaminano i legami tra f ed altre possibili definizioni di distanza in grande.


Work performed in the sphere of activity of: Gruppo Nazionale per la Fisica Matematica del CNR.  相似文献   

16.
A large number of studies have been devoted to the unsteady flow of a viscid incompressible fluid past a lattice of thin profiles and the determination of the resulting aerodynamic forces and moments. For example, in the particular case of the motion of a lattice with stagger with zero phase shift of the oscillations between neighboring profiles, Haskind [1] determined the unsteady lift force and moment. Popescu [2] suggested expressions for the force and moment in the case when =0 and =0, using the method of conformal mapping. Samoilovich [3] obtained equations for the unsteady lift force and moment by the method of the acceleration potential for phase shift =0 and = of the oscillations between neighboring profiles. Musatov [4] used an electronic digital computer to calculate the overall unsteady aerodynamic characteristics of a grid by the vortex method, taking into account the amplitude of the oscillations and the initial circulation for =m (m1). Gorelov [5] determined the coefficients of the over-all unsteady aerodynamic force and moment of a profile in a lattice with the stagger and any value of =m. He used a method based on the unsteady flow past an isolated profile with subsequent account for the interference of the profiles in the lattice.In the following we find general expressions for the unsteady lift force and moment acting on a lattice moving in an incompressible fluid with the constant velocity U. These formulas generalize the known formulas for the isolated profile [6]. The profiles of a staggered grid (Section 1) are considered to be thin and slightly curved, and perform oscillations with a phase shift of the oscillations between neighboring profiles. The method of separation of singularities is used to obtain the solution in closed form. The coefficients of the expansion of the complex velocity in a series in the derivatives of a function are calculated. An integral equation relative to the unknown tangential velocity component in the wake is derived (Section 2), and its analytic solution is given (Section 3). For =0 the solution coincides with the solution obtained earlier in [7]. Expressions are obtained for the forces and moments (Section 4) in the form of four terms. The first two terms determine the force and moment for motion with constant circulation, and the last two determine these characteristics for motion with variable circulation. The suction force acting at the leading edges of the profiles is found in a general form. Particular cases of closely and widely spaced lattices are considered. Computational results are presented.  相似文献   

17.
The mixed convection flow in a vertical duct is analysed under the assumption that , the ratio of the duct width to the length over which the wall is heated, is small. It is assumed that a fully developed Poiseuille flow has already been set up in the duct before heat from the wall causes this to be changed by the action of the buoyancy forces, as measured by a buoyancy parameter . An analytical solution is derived for the case when the Reynolds numberRe, based on the duct width, is of 0 (1). This is extended to the case whenRe is 0 (–1) by numerical integrations of the governing equations for a range of values of representing both aiding and opposing flows. The limiting cases, || 1 andR=Re of 0 (1), andR and both large, with of 0 (R 1/3) are considered further. Finally, the free convection limit, large with R of 0 (1), is discussed.
Mischkonvektion in engen senkrechten Rohren
Zusammenfassung Mischkonvektion in einem senkrechten Rohr wird unter der Voraussetzung untersucht, daß das Verhältnis der Rohrbreite zur Länge, über welche die Wand beheizt wird, klein ist. Es wird angenommen, daß sich bereits eine voll entwickelte Poiseuille-Strömung in dem Rohr eingestellt hat, bevor Antriebskräfte, gemessen mit dem Auftriebsparameter , aufgrund der Wandbeheizung die Strömung verändern. Es wird eine analytische Lösung für den Fall erhalten, daß die mit der Rohrbreite als charakteristische Länge gebildete Reynolds-ZahlRe konstant ist. Dies wird mittels einer numerischen Integration der wichtigsten Gleichungen auf den FallRe =f (–1) sowohl für Gleich- als auch für Gegenstrom ausgedehnt. Weiterhin werden die beiden Grenzfälle betrachtet, wenn || 1 undR=Re konstant ist, sowieR und beide groß mit proportionalR 1/3. Schließlich wird der Grenzfall der freien Konvektion, großes mit konstantem R, diskutiert.

Nomenclature g acceleration due to gravity - Gr Grashof number - G modified Grashof number - h duct width - l length of the heated section of the duct wall - p pressure - Pr Prandtl number - Q flow rate through the duct - Q 0 heat transfer on the wally=0 - Q 1 heat transfer on the wally=1 - Re Reynolds number - R modified Reynolds number - T temperature of the fluid - T 0 ambient temperature - T applied temperature difference - u, velocity component in thex-direction - v, velocity component in they-direction - x, co-ordinate measuring distance along the duct - y, co-ordinate measuring distance across the duct - buoyancy parameter - 0 modified buoyancy parameter, 0=R –1/3 - coefficient of thermal expansion - ratio of duct width to heated length, =h/l - (non-dimensional) temperature - w applied temperature on the wally=0 - kinematic viscosity - density of the fluid - 0 shear stress on the wally=0 - 1 shear stress on the wally=1 - stream function  相似文献   

18.
Zusammenfassung Zur Berechnung der dynamischen Idealviskosität Ideal (T) und der Idealwärmeleitfähigkeit ideal (T) benötigt man die kritische TemperaturT kr, das kritische spezifische Volum kr, die MolmasseM, den kritischen Parameter kr und die molare isochore WärmekapazitätC v(T). Sowohl das theoretisch, als auch das empirisch abgeleitete erweiterte Korrespondenzgesetz ergeben eine für praktische Zwecke ausreichende Genauigkeit für die Meßwertwiedergabe, die bei den assoziierenden Stoffen und den Quantenstoffen jedoch geringer ist als bei den Normalstoffen.
The extended correspondence law for the ideal dynamic viscosity and the ideal thermal conductivity of pure substances
For the calculation of the ideal dynamic viscosity Ideal (T) and the ideal thermal conductivity ideal (T) the critical temperatureT kr, the critical specific volumev kr, the molecular massM, the critical parameter kr, and the molar isochoric heat capacityC v(T) is needed. Not only the theoretically determined but also the empirically determined extended correspondence law gives for practical use a good representation of the measured data, which for the associating substances and the quantum substances is not so good as for the normal substances.
  相似文献   

19.
Flooding oil reservoirs with surfactant solutions can increase the amount of oil that can be recovered. Macroscopic modelling of the process requires relative permeabilities to be functions of saturation and capillary number. With only limited experimental data, relative permeabilities have usually been assumed to be linear functions of saturation at high capillary numbers. The experimental data is reviewed, some of which suggest that this assumption is not necessarily correct. The basis for the assumption is therefore reviewed and it is concluded that the linear model corresponds to microscopically segregated flow in the porous medium. Based on new but equally plausible complementary assumptions about the flow pattern, a mixed flow model is derived. These models are then shown to be limiting cases of a droplet model which represents the mixing scale within the porous medium and gives a physical basis for interpolating between the models. The models are based on physical concepts of flow in a porous medium and so the approach described here represents a significant improvement in the understanding of high capillary number flow. This is shown by the fact that fewer parameters are needed to describe experimental data.Notation A total cross-sectional area assigned to capillary bundle - A (i) physical cross-sectional area of tube i - c (i) ordered configurational label for droplets in tube i - c configuration label for tube i (order not considered) - D defined by Equation (26) - E(...) expectation value with respect to the trinomial distribution - S r () fractional flow of phase - k absolute permeability - k r relative permeability of phase - k r 0 endpoint relative permeability of phase - L capillary tube length in bundle model - m (i) number of droplets of phase a occupying tube i - n exponent for phase a in Equation (2) - N number of droplets in bundle model - N c capillary number - p pressure - p(c') probability of configuration c - Q (i) total volume flow rate in tube i - S saturation of phase - S flowing saturation of phase - S r residual saturation of phase - S r () saturations when fractional flow of phase is 1 in the case of varying residual saturations for three-phase flow ( ) - t c residence time for droplet configuration c - v (i) total fluid velocity in bundle tube i - , phase label - p pressure differential across capillary bundle - (i) tube conductivity defined by Equation (7) - viscosity of phase - interfacial tension - gradient operator - ... average over tube droplet configurations  相似文献   

20.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号