首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tao Xu  Yi Zhang 《Nonlinear dynamics》2013,73(1-2):485-498
With the aim of exploring whether the (1+1)-dimensional coupled nonlinear evolution equations admit abundant soliton interactions, like the cases in the Kadomtsev–Petviashvili II equation, we in this paper study the double Wronskian solutions to the Whitham–Broer–Kaup (WBK) system. We give the parametric condition for two double Wronskians to generate the non-singular, non-trivial and irreducible soliton solutions. Via the asymptotic analysis of two double Wronskians, we show that the soliton solutions of the WBK system is in general linearly combined of fully resonant (M,N)- and (M?1,N+1)-soliton configurations. It turns out that the WBK system can exhibit various complex soliton structures which are different pairwise combinations of elastic, confluent and divergent interactions. From a combinatorial viewpoint, we also explain that the asymptotic solitons of a [(M,N),(M?1,N+1)]-soliton solution are identified by a pair of Grassmannian permutations.  相似文献   

2.
3.
The unsteady flow of an incompressible generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate has been studied using Fourier sine and Laplace transforms. The obtained solutions for the velocity field and shear stresses, written in terms of the generalized G and R functions, are presented as sum of the similar Newtonian solutions and the corresponding non-Newtonian contributions. For α = β = 1 and λr → λ these solutions are going to the corresponding Newtonian solutions. Furthermore, the solutions for generalized Maxwell fluids as well as those for ordinary Oldroyd-B and Maxwell fluids, performing the same motion, are also obtained as limiting cases of our general solutions. In the absence of the side walls, namely when the distance between the two walls tends to infinity, the solutions corresponding to the motion over an infinite constantly accelerating plate are recovered. For λr → 0 and β → 1, these solutions reduce to the known solutions from the literature. Finally, the effect of the material parameters on the velocity profile is spotlighted by means of the graphical illustrations.  相似文献   

4.
The radial diffusion in a sphere of radius R is described using time-fractional diffusion equation. The Caputo fractional derivative of the order 0<α<2 is used. The Laplace and finite sin-Fourier transforms are employed. The solution is written in terms of the Mittag–Leffler functions. For the first and second time-derivative terms, the obtained solutions reduce to the solutions of the ordinary diffusion and wave equations. Several examples of signaling, source and Cauchy problems are presented. Numerical results are illustrated graphically.  相似文献   

5.
A scaling analysis based on the field equations for two phases and the jump conditions at the interface is carried out to deduce a balance of forces acting on a Taylor drop rising through stagnant liquid in a vertical pipe. The force balance is utilized to deduce a functional form of an empirical correlation of terminal velocity of the Taylor drop. Undetermined coefficients in the correlation are evaluated by making use of available correlations for two limiting cases, i.e. extremely high and low Reynolds number Taylor bubbles in large pipes. Terminal velocity data obtained by interface tracking simulations are also used to determine the coefficients. The proposed correlation expresses the Froude number Fr as a function of the drop Reynolds number ReD, the Eötvös number EoD and the viscosity ratio μ*. Comparisons between the correlation, simulations and experimental data confirm that the proposed correlation is applicable to Taylor drops under various conditions, i.e., 0.002 < ReD < 4960, 4.8 < EoD < 228, 0 ? μ* ? 70, 1 < N < 14700, −12 < log M < 4, and d/D < 1.6, where N is the inverse viscosity number, M the Morton number, d the sphere-volume equivalent drop diameter and D the pipe diameter.  相似文献   

6.
Saturated flow boiling of environmentally acceptable nonionic surfactant solutions of Alkyl (8–16) was compared to that of pure water. The concentration of surfactant solutions was in the range of 100–1000 ppm. The liquid flowed in an annular gap of 2.5 and 4.4 mm between two vertical tubes. The heat was transferred from the inner heated tube to two-phase flow in the range of mass flux from 5 to 18 kg/m2 s and heat flux from 40 to 200 kW/m2. Boiling curves of water were found to be heat flux and channel gap size dependent but essentially mass flux independent. An addition of surfactant to the water produced a large number of bubbles of small diameter, which, at high heat fluxes, tend to cover the entire heater surface with a vapor blanket. It was found that the heat transfer increased at low values of relative surfactant concentration C/C0, reaches a maximum close to the value of C/C0 = 1 (where C0 = 300 ppm is the critical micelle concentration) and decreased with further increase in the amount of additive. The dependence of the maximal values of the relative heat transfer enhancement, obtained at the value of relative concentration of C/C0 = 1, on the boiling number Bo may be presented as single curve for both gap sizes and the whole range of considered concentrations.  相似文献   

7.
Korteweg–de Vries (KdV)-type equations describe certain nonlinear phenomena in fluids and plasmas. In this paper, three-coupled KdV equations corresponding to the Neumann system of the fourth-order eigenvalue problem is investigated. Through the dependent variable transformations, bilinear forms of such equations are obtained, from which the multi-soliton solutions are derived. Soliton propagation and interaction are analyzed: (1) Bell- and anti-bell-shaped solitons are found; (2) Among the soliton images, one depends on the sign of wave numbers k i ’s (i=1,2,3), while the others are independent of such a sign; (3) Interaction between two solitons and among three solitons are elastic, i.e., the amplitude and velocity of each soliton remain unvaried after the interaction except for the phase shift.  相似文献   

8.
The number of through-thickness integration points (NIP) required for accurate springback analysis following sheet forming simulation using shell elements is a subject of confusion and controversy. Li and Wagoner recommended, in 1999, based on a finite element analysis (FEA) of draw-bending springback, the use of 25 integration points (IP), with up to 51 IP required to ensure accuracies of 1%. Several researchers have since reported that NIP between 5 and 11 are adequate, or even that 7 or 9 IP are optimal, with reduced accuracy for more IP. These apparent contradictions are addressed with an analytical model of elasto-plastic bending under tension, followed by elastic springback. The fractional error in the evaluated bending moment, which is equal to the fractional error in springback, was determined by comparing three numerical integration schemes, with various NIP, to the closed-form result. The results illustrate the oscillatory nature of numerical integration error with small parametric changes, such that fortuitous agreement can be obtained in isolated simulations where the number of integration points is inadequate. The concept of an assured error limit is introduced as well as a maximum error limit (for a range of generally unknown sheet tensions). The assured error limit varies with the integration scheme, NIP, bending ratio (R/t), and sheet tension. Guidelines for the number of integration points required for given error tolerances are reported to allow practitioners to choose numerical parameters appropriately.  相似文献   

9.
An experimental program was carried out in a recently developed torsion shear apparatus to study the non-coaxiality of strain increment and stress directions in cross-anisotropic deposits of Fine Nevada sand. Forty-four drained torsion shear tests were performed at constant mean confining stress, σm, constant intermediate principal stress ratios, as indicated by b = (σ2  σ3)/(σ1  σ3), and constant principal stress directions, α. The experiments were performed on large hollow cylinder specimens deposited by dry pluviation and tested in an automated torsion shear apparatus. The specimens had height of 40 cm, and average diameter of 20 cm, and wall thickness of 2 cm. The stress–strain behavior of Fine Nevada sand is presented for discrete combinations of constant principal stress direction, α, and intermediate principal stress. The effects of these two variables on the non-coaxiality are presented. The experiments show that the directions of the strain increments do not in general coincide with the directions of stresses, and there is a switch from one to the other side between the two quantities.  相似文献   

10.
IntroductionWiththerapiddevelopmentofscienceandtechnology ,thestudykernelofmodernscienceischangedfromlineartononlinearstepbystep .Manynonlinearscienceproblemscansimplyandexactlybedescribedbyusingthemathematicalmodelofnonlinearequation .Uptonow ,manyimpor…  相似文献   

11.
We consider turbulent flows in a differentially heated Taylor-Couette system with an axial Poiseuille flow. The numerical approach is based on the Reynolds Stress Modeling (RSM) of [Elena and Schiestel, 1996] and [Schiestel and Elena, 1997] widely validated in various rotor-stator cavities with throughflow ( [Poncet, 2005], [Poncet et al., 2005] and [Haddadi and Poncet, 2008]) and heat transfer (Poncet and Schiestel, 2007). To show the capability of the present code, our numerical predictions are compared very favorably to the velocity measurements of Escudier and Gouldson (1995) in the isothermal case, for both the mean and turbulent fields. The RSM model improves, in particular, the predictions of the k-ε model of Naser (1997). Then, the second order model is applied for a large range of rotational Reynolds (3744 ? Rei ? 37,443) and Prandtl numbers (0.01 ? Pr ? 12), flow rate coefficient (0 ? Cw ? 30,000) in a very narrow cavity of radius ratio s = Ri/Ro = 0.961 and aspect ratio L = (Ro − Ri)/h = 0.013, where Ri and Ro are the radii of the inner and outer cylinders respectively and h is the cavity height. Temperature gradients are imposed between the incoming fluid and the inner and outer cylinders. The mean hydrodynamic and thermal fields reveal three distinct regions across the radial gap with a central region of almost constant axial and tangential mean velocities and constant mean temperature. Turbulence, which is weakly anisotropic, is mainly concentrated in that region and vanishes towards the cylinders. The mean velocity distributions are not clearly affected by the rotational Reynolds number and the flow rate coefficient. The effects of the flow parameters on the thermal field are more noticeable and considered in details. Correlations for the averaged Nusselt numbers along both cylinders are finally provided according to the flow control parameters Rei, Cw, and Pr.  相似文献   

12.
The complex flow behaviour of semi-dilute (15 < c/c* < 22.5) polydisperse polyethylene oxide (PEO) aqueous solutions flowing through a planar microfluidic geometry with an 8:1:8 contraction-expansion is systematically studied. The molecular weight and distribution of the PEO samples are analysed by Gel Permeation Chromatography (GPC). Full rheometric characterizations using various techniques including piezoelectric axial vibrator (PAV) measurements at frequencies as high as 6700 Hz are carried out for one semi-dilute PEO solution. Complex flows over a wide range of elasticity numbers (20 ? El ? 120), Weissenberg numbers (7 ? Wi ? 121) and Reynolds numbers (0.08 ? Re ? 4.5) are characterized using micro-particle image velocimetry (μ-PIV) and pressure drop measurements. The evolution of vortex formation and dynamics has been visualized through a step-flow-rate experiment. The effect of El on vortex stability has been studied. Various flow dynamics regimes have been quantified and are presented in a Wi-Re diagram. The experimental results reveal that the elastic behaviour of polymer solutions is very sensitive to high molecular weight polymer in the polydisperse polymer samples, and the contraction ratio and the aspect ratio of flow geometry are the important design parameters in controlling the non-linear dynamics of semi-dilute polymer solutions in microfluidics.  相似文献   

13.
Kumar  Sachin  Mohan  Brij  Kumar  Raj 《Nonlinear dynamics》2022,110(1):693-704

This article investigates a nonlinear fifth-order partial differential equation (PDE) in two-mode waves. The equation generalizes two-mode Sawada-Kotera (tmSK), two-mode Lax (tmLax), and two-mode Caudrey–Dodd–Gibbon (tmCDG) equations. In 2017, Wazwaz [1] presented three two-mode fifth-order evolutions equations as tmSK, tmLax, and tmCDG equations for the integrable two-mode KdV equation and established solitons up to three-soliton solutions. In light of the research above, we examine a generalized two-mode evolution equation using a logarithmic transformation concerning the equation’s dispersion. It utilizes the simplified technique of the Hirota method to obtain the multiple solitons as a single soliton, two solitons, and three solitons with their interactions. Also, we construct one-lump solutions and their interaction with a soliton and depict the dynamical structures of the obtained solutions for solitons, lump, and their interactions. We show the 3D graphics with their contour plots for the obtained solutions by taking suitable values of the parameters presented in the solutions. These equations simultaneously study the propagation of two-mode waves in the identical direction with different phase velocities, dispersion parameters, and nonlinearity. These equations have applications in several real-life examples, such as gravity-affected waves or gravity-capillary waves, waves in shallow water, propagating waves in fast-mode and the slow-mode with their phase velocity in a strong and weak magnetic field, known as magneto-sound propagation in plasmas.

  相似文献   

14.
In this work we present an investigation of viscoelastic flow in a planar sudden expansion with expansion ratio D/d = 4. We apply the modified FENE–CR constitutive model based on the non-linear finite extensibility dumbbells (FENE) model. The governing equations were solved using a finite volume method with the high-resolution CUBISTA scheme utilised for the discretisation of the convective terms in the stress and momentum equations. Our interest here is to investigate two-dimensional steady-state solutions where, above a critical Reynolds number, stable asymmetric flow states are known to occur. We report a systematic parametric investigation, clarifying the roles of Reynolds number (0.01 < Re < 100), Weissenberg number (0 < We < 100) and the solvent viscosity ratio (0.3 < β < 1). For most simulations the extensibility parameter of the FENE model was kept constant, at a value L2 = 100, but some exploration of its effect in the range 100–500 shows a rather minor influence. The results given comprise flow patterns, streamlines and vortex sizes and intensities, and pressure and velocity distributions along the centreline (i.e. y = 0). For the Newtonian case, in agreement with previous studies, a bifurcation to asymmetric flow was observed for Reynolds numbers greater than about 36. In contrast viscoelasticity was found to stabilise the flow; setting β = 0.5 and We = 2 as typical values, resulted in symmetric flow up to a Reynolds number of about 46. We analyse these two cases in particular detail.  相似文献   

15.
The adiabatic two-phase frictional multipliers for SUVA, R-134a flowing in a rectangular duct (with DH = 4.8 mm) have been measured for three nominal system pressures (0.9 MPa, Tsat = 35.5 °C; 1.38 MPa, Tsat = 51.8 °C; and 2.41 MPa, Tsat = 75.9 °C) and three nominal mass fluxes (510, 1020 and 2040 kg/m2/s). The data is compared with several classical correlations to assess their predictive capabilities. The Lockhart–Martinelli model gives reasonable results at the lowest pressure and mass flux, near the operating range of most refrigeration systems, but gives increasingly poor comparisons as the pressure and mass flux are increased. The Chisholm B-coefficient model is found to best predict the data over the entire range of test conditions; however, there is significant disagreement at the highest pressure tested (with the model over predicting the data upwards of 100% for some cases). The data shows an increased tendency toward homogeneous flow as the pressure and flow rate are increased, and in fact the homogeneous model best predicts the bulk of the data at the highest pressure tested.  相似文献   

16.
17.
This paper is concerned with the axisymmetric elastostatic problem related to the rotation of a rigid punch which is bonded to the surface of a nonhomogeneous half-space. The half-space is composed of an isotropic homogeneous coating in the form of layer, which is attached to the functionally graded half-space. The shear modulus of the FGM is assumed to vary in the direction of axis Oz normal to the boundary as μ1(z) = μ0(1 + αz)β, where μ0, α, β are positive constants. The punch undergoes rotation due to the action of the internal loads. By using Hankel's integral transforms, the mixed boundary value problem is reduced to dual integral equations, and next, to a Fredholm's integral equation of the second kind, which is solved numerically for the case of β = 2. The final results show the effect of non-homogeneity on the shear stresses and an unknown moment of punch rotation.  相似文献   

18.
Laminar free convection heat transfer from two vertical arrays of five isothermal cylinders separated by flow diverters is studied experimentally using a Mach-Zehnder interferometer. The width of flow diverters is kept constant to two-cylinder diameters and the cylinders vertical center-to-center spacing is equal to three-cylinder diameter. Effect of the ratio of the horizontal spacing between two cylinder arrays to their diameter (Sh/D) on heat transfer from the cylinders is investigated for various Rayleigh numbers. The experiments are performed for Sh/D = 2-4, and the Rayleigh number based on the cylinder diameter ranging from 103 to 3 × 103. It is observed that for small Sh/D ratios, the flow diverters have a negative effect on the total rate of heat transfer from the arrays; while by increasing the horizontal center to center spacing, they tend to enhance the overall cooling rate of the array. Moreover, increasing Ra and Sh/D generally results in a higher average Nusselt number for each cylinder in the array.  相似文献   

19.
20.
High temperature and pressure reactive flows through porous media   总被引:2,自引:0,他引:2  
Large heat load are encountered in hypersonic and space flight applications due to the high vehicle speed (over Mach 5, i.e. 5000 km h−1) and to the combustion heat release. If passive and ablative protections are a way to ensure the thermal management, the active cooling is probably the most efficient way to enable the structures withstanding of such large heat load. In some conditions, transpiration cooling will be used. In this paper, the permeation of fuels and other fluids through porous media is studied up to 1150 K and 60 bars. A dedicated experimental bench has been established to ensure the monitoring of temperature, pressure, mass flow rate and chemical composition (Gas Chromatograph, Mass Spectrometer, Infra Red spectrometer) in stationary and transient conditions. The tests on metallic and composite samples have been conducted with N2, CH4, H2 + CH4 mixtures and synthetic fuels (n-C12H26). The pressure losses comparison with the mass flow rate has enabled the determination depending on the temperature of the Darcian permeability, KD the linear contribution, and of the Forchheimer’s term, KF the quadratic one. The fuel pyrolysis in such low Reynolds flow has been investigated. The blockage effect due to coking activity has been estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号