首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cavitation, chemical effect, and mechanical effect thresholds were investigated in wide frequency ranges from 22 to 4880 kHz. Each threshold was measured in terms of sound pressure at fundamental frequency. Broadband noise emitted from acoustic cavitation bubbles was detected by a hydrophone to determine the cavitation threshold. Potassium iodide oxidation caused by acoustic cavitation was used to quantify the chemical effect threshold. The ultrasonic erosion of aluminum foil was conducted to estimate the mechanical effect threshold. The cavitation, chemical effect, and mechanical effect thresholds increased with increasing frequency. The chemical effect threshold was close to the cavitation threshold for all frequencies. At low frequency below 98 kHz, the mechanical effect threshold was nearly equal to the cavitation threshold. However, the mechanical effect threshold was greatly higher than the cavitation threshold at high frequency. In addition, the thresholds of the second harmonic and the first ultraharmonic signals were measured to detect bubble occurrence. The threshold of the second harmonic approximated to the cavitation threshold below 1000 kHz. On the other hand, the threshold of the first ultraharmonic was higher than the cavitation threshold below 98 kHz and near to the cavitation threshold at high frequency.  相似文献   

2.
An in situ synchrotron radiographic study of a molten Al–10 wt% Cu alloy under the influence of an external ultrasonic field was carried out using the Diamond-Manchester Branchline pink X-ray imaging at the Diamond Light Source in UK. A bespoke test rig was used, consisting of an acoustic transducer with a titanium sonotrode coupled with a PID-controlled resistance furnace. An ultrasonic frequency of 30 kHz, with a peak to peak amplitude at 140 microns, was used, producing a pressure output of 16.9 MPa at the radiation surface of the 1-mm diameter sonotrode.This allowed quantification of not only the cavitation bubble formation and collapse, but there was also evidence of the previously hypothesised ultrasonic capillary effect (UCE), providing the first direct observations of this phenomenon in a molten metallic alloy. This was achieved by quantifying the re-filling of a pre-existing groove in the shape of a tube (which acted as a micro-capillary channel) formed by the oxide envelope of the liquid sample. Analytical solutions of the flow suggest that the filling process, which took place in very small timescales, was related to micro-jetting from the collapsing cavitation bubbles. In addition, a secondary mechanism of liquid penetration through the groove, which is related with the density distribution of the oxides inside the groove, and practically to the filtration of aluminium melt from oxides, was revealed. The observation of the almost instantaneous re-filling of a micro-capillary channel with the metallic melt supports the hypothesised sono-capillary effect in technologically important liquids other than water, like metallic alloys with substantially higher surface tension and density.  相似文献   

3.
An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial–temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (⩽50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (⩾70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.  相似文献   

4.
Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al–10 wt% Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm2 and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t) = αtβ, and α = 0.0021 & β = 0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.  相似文献   

5.
This paper describes the ultrasound assisted dispersal of a low wt./vol.% copper nanopowder mixture and determines the optimum conditions for de-agglomeration. A commercially available powder was added to propan-2-ol and dispersed using a magnetic stirrer, a high frequency 850 kHz ultrasonic cell, a standard 40 kHz bath and a 20 kHz ultrasonic probe. The particle size of the powder was characterized using dynamic light scattering (DLS). Z-Average diameters (mean cluster size based on the intensity of scattered light) and intensity, volume and number size distributions were monitored as a function of time and energy input. Low frequency ultrasound was found to be more effective than high frequency ultrasound at de-agglomerating the powder and dispersion with a 20 kHz ultrasonic probe was found to be very effective at breaking apart large agglomerates containing weakly bound clusters of nanoparticles. In general, the breakage of nanoclusters was found to be a factor of ultrasonic intensity, the higher the intensity the greater the de-agglomeration and typically micron sized clusters were reduced to sub 100 nm particles in less than 30 min using optimum conditions. However, there came a point at which the forces generated by ultrasonic cavitation were either insufficient to overcome the cohesive bonds between smaller aggregates or at very high intensities decoupling between the tip and solution occurred. Absorption spectroscopy indicated a copper core structure with a thin oxide shell and the catalytic performance of this dispersion was demonstrated by drop coating onto substrates and subsequent electroless copper metallization. This relatively inexpensive catalytic suspension has the potential to replace precious metal based colloids used in electronics manufacturing.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(4):1275-1278
Cavitation bubbles in Al–10 wt.%Cu melt has been investigated by adopting synchrotron radiation X-ray imaging technology. In-situ observation reveals that most of bubbles concentrate within an intense cavitation zone nearby the radiation face. The measured near-maximum bubble radii obey a similar truncated Gaussian distribution as in water but increase by nearly the magnitude of one order due to higher ultrasonic intensity applied in aluminum melt.  相似文献   

7.
When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. Cavitation can be fatal to cells and is utilized to destroy cancer tumors. The existence of particles in liquid provides nucleation sites for cavitation bubbles and leads to decrease the ultrasonic intensity threshold needed for cavitation onset. In the present investigation, the effect of gold nanoparticles with appropriate amount and size on the acoustic cavitation activity has been shown by determining hydroxyl radicals in terephthalic acid solutions containing 15, 20, 28 and 35 nm gold nanoparticles sizes by using 1 MHz low level ultrasound. The effect of sonication intensity in hydroxyl radical production was considered.The recorded fluorescence signal in terephthalic acid solutions containing gold nanoparticles was considerably higher than the terephthalic acid solutions without gold nanoparticles at different intensities of ultrasound irradiation. Also, the results showed that the recorded fluorescence signal intensity in terephthalic acid solution containing finer size of gold nanoparticles was lower than the terephthalic acid solutions containing larger size of gold nanoparticles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors.  相似文献   

8.
The bubble collapse near a wall will generate strong micro-jet in a liquid environment under ultrasonic field. To explore the effect of the impact of near-wall acoustic bubble collapse micro-jet on an aluminum 1060 sheet, the cavitation threshold formula and micro-jet velocity formula were first proposed. Then the Johnson-Cook rate correlation material constitutive model was considered, and a three-dimensional fluid-solid coupling model of micro-jet impact on a wall was established and analyzed. Finally, to validate the model, ultrasonic cavitation test and inversion analysis based on the theory of spherical indentation test were conducted. The results show that cavitation occurs significantly in the liquid under ultrasonic field, as the applied ultrasonic pressure amplitude is much larger than liquid cavitation threshold. Micro pits appear on the material surface under the impact of micro-jet. Pit depth is determined by both micro-jet velocity and micro-jet diameter, and increases with their increase. Pit diameter is mainly related to the micro-jet diameter and dp/dj  0.95–1.2, while pit’s diameter-to-depth ratio is mainly negatively correlated with the micro-jet velocity. Wall pressure distribution is mostly symmetric and its maximum appears on the edge of micro-jet impingement. Obviously, the greater the micro-jet velocity is, the greater the wall pressure is. Micro pits formed after the impact of micro-jet on aluminum 1060 surface were assessed by ultrasonic cavitation test. Inversion analysis results indicate that equivalent stress, equivalent strain of the pit and impact strength, and velocity of the micro-jet are closely related with pit’s diameter-to-depth ratio. For the pit’s diameter-to-depth ratio of 16–68, the corresponding micro-jet velocity calculated is 310–370 m/s.  相似文献   

9.
The motion of a single water droplet in oil under ultrasonic irradiation is investigated with high-speed photography in this paper. First, we described the trajectory of water droplet in oil under ultrasonic irradiation. Results indicate that in acoustic field the motion of water droplet subjected to intermittent positive and negative ultrasonic pressure shows obvious quasi-sinusoidal oscillation. Afterwards, the influence of major parameters on the motion characteristics of water droplet was studied, such as acoustic intensity, ultrasonic frequency, continuous phase viscosity, interfacial tension, and droplet diameter, etc. It is found that when the acoustic intensity and frequency are 4.89 W cm−2 and 20 kHz respectively, which are the critical conditions, the droplet varying from 250 to 300 μm in lower viscous oil has the largest oscillation amplitude and highest oscillation frequency.  相似文献   

10.
Casein solutions with different pH values were sonicated at a frequency of 35 kHz and increasing acoustic powers. As the sonication power increased, turbidity of solutions and particle diameter decreased at any given pH value, suggesting particles disruption due to the ultrasonic treatment. The magnitude of decrease in re-assembled micelles diameter was greater at a higher pH, indicating an interaction between pH and sonication power in sonodissociation. This interaction is attributed to a looser structure of micelles at higher pH values which increases the efficiency of ultrasonic disruption and not directly to the increased cavitation efficiency. We argue that increased cavitation efficiency with increasing sonication power, which enhances shear forces is the most likely reason for sonodisruption of re-assembled casein micelles.  相似文献   

11.
The inertial cavitation activity depends on the sonication parameters. The purpose of this work is development of dual frequency inertial cavitation meter for therapeutic applications of ultrasound waves. In this study, the chemical effects of sonication parameters in dual frequency sonication (40 kHz and 1 MHz) were investigated in the progressive wave mode using iodide dosimetry. For this purpose, efficacy of different exposure parameters such as intensity, sonication duration, sonication mode, duty factor and net ultrasound energy on the inertial cavitation activity have been studied. To quantify cavitational effects, the KI dosimeter solution was sonicated and its absorbance at a wavelength of 350 nm was measured. The absorbance values in continuous sonication mode was significantly higher than the absorbance corresponding to the pulsed mode having duty factors of 20–80% (p < 0.05). Among different combination modes (1 MHz100% + 40 kHz100%, 1 MHz100% + 40 kHz80%, 1 MHz80% + 40 kHz100%, 1 MHz80% + 40 kHz80%), the continuous mode for dual frequency sonication is more effective than other combinations (p < 0.05). The absorbance for this combined dual frequency mode was about 1.8 times higher than that obtained from the algebraic summation of single frequency sonications. It is believed that the optimization of dual frequency sonication parameters at low-level intensity (<3 W/cm2) by optically assisted cavitation event sensor can be useful for ultrasonic treatments.  相似文献   

12.
We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation.  相似文献   

13.
The ultrasonic extraction of oils is a typical physical processing technology. The extraction process was monitored from the standpoint of the oil quality and efficiency of oil extraction. In this study, the ultrasonic cavitation fields were measured by polyvinylidene fluoride (PVDF) sensor. Waveform of ultrasonic cavitation fields was gained and analyzed. The extraction yield and oxidation properties were compared. The relationship between the fields and cavitation oxidation was established. Numerical calculation of oscillation cycle was done for the cavitation bubbles. Results showed that the resonance frequency, fr, of the oil extraction was 40 kHz. At fr, the voltage amplitude was the highest; the time was the shortest as reaching the amplitude of the waveform. Accordingly, the cavitation effect worked most rapidly, resulting in the strongest cavitation intensity. The extraction yield and oxidation properties were closely related to the cavitation effect. It controlled the cavitation oxidation effectively from the viewpoint of chemical and physical aspects.  相似文献   

14.
Various industrial processes such as sonochemical processing and ultrasonic cleaning strongly rely on the phenomenon of acoustic cavitation. As the occurrence of acoustic cavitation is incorporating a multitude of interdependent effects, the amount of cavitation activity in a vessel is strongly depending on the ultrasonic process conditions. It is therefore crucial to quantify cavitation activity as a function of the process parameters. At 1 MHz, the active cavitation bubbles are so small that it is becoming difficult to observe them in a direct way. Hence, another metrology based on secondary effects of acoustic cavitation is more suitable to study cavitation activity. In this paper we present a detailed analysis of acoustic cavitation phenomena at 1 MHz ultrasound by means of time-resolved measurements of sonoluminescence, cavitation noise, and synchronized high-speed stroboscopic Schlieren imaging. It is shown that a correlation exists between sonoluminescence, and the ultraharmonic and broadband signals extracted from the cavitation noise spectra. The signals can be utilized to characterize different regimes of cavitation activity at different acoustic power densities. When cavitation activity sets on, the aforementioned signals correlate to fluctuations in the Schlieren contrast as well as the number of nucleated bubbles extracted from the Schlieren Images. This additionally proves that signals extracted from cavitation noise spectra truly represent a measure for cavitation activity. The cyclic behavior of cavitation activity is investigated and related to the evolution of the bubble populations in the ultrasonic tank. It is shown that cavitation activity is strongly linked to the occurrence of fast-moving bubbles. The origin of this “bubble streamers” is investigated and their role in the initialization and propagation of cavitation activity throughout the sonicated liquid is discussed. Finally, it is shown that bubble activity can be stabilized and enhanced by the use of pulsed ultrasound by conserving and recycling active bubbles between subsequent pulsing cycles.  相似文献   

15.
Oil saturated cylindrical sandstone cores were placed into imbibition cells where they contacted with an aqueous phase and oil recovery performances were tested with and without ultrasonic radiation keeping all other conditions and parameters constant. Experiments were conducted for different initial water saturation, oil viscosity and wettability. The specifications of acoustic sources such as ultrasonic intensity (45–84 W/sq cm) and frequency (22 and 40 kHz) were also changed. An increase in recovery was observed with ultrasonic energy in all cases. This change was more remarkable for the oil-wet medium. The additional recovery with ultrasonic energy became lower as the oil viscosity increased. We also designed a setup to measure the ultrasonic energy penetration capacity in different media, namely air, water, and slurry (sand + water mixture). A one-meter long water or slurry filled medium was prepared and the ultrasonic intensity and frequency were monitored as a function of distance from the source. The imbibition cells were placed at certain distances from the sources and the oil recovery was recorded. Then, the imbibition recovery was related to the ultrasonic intensity, frequency, and distance from the ultrasonic source.  相似文献   

16.
Power ultrasonic vibration (20 kHz, 6 μm) was applied to assist the interaction between a liquid Al–Si alloy and solid Ti–6Al–4V substrate in air. The interaction behaviors, including breakage of the oxide film on the Ti–6Al–4V surface, chemical dissolution of solid Ti–6Al–4V, and interfacial chemical reactions, were investigated. Experimental results showed that numerous 2–20 μm diameter-sized pits formed on the Ti–6Al–4V surface. Propagation of ultrasonic waves in the liquid Al–Si alloy resulted in ultrasonic cavitation. When this cavitation occurred at or near the liquid/solid interface, many complex effects were generated at the small zones during the bubble implosion, including micro-jets, hot spots, and acoustic streaming. The breakage behavior of oxide films on the solid Ti–6Al–4V substrate, excessive chemical dissolution of solid Ti–6Al–4V into liquid Al–Si, abnormal interfacial chemical reactions at the interface, and phase transformation between the intermetallic compounds could be wholly ascribed to these ultrasonic effects. An effective bond between Al–Si and Ti–6Al–4V can be produced by ultrasonic-assisted brazing in air.  相似文献   

17.
《Ultrasonics sonochemistry》2014,21(5):1696-1706
The generation and control of acoustic cavitation structure are a prerequisite for application of cavitation in the field of ultrasonic sonochemistry and ultrasonic cleaning. The generation and control of several typical acoustic cavitation structures (conical bubble structure, smoker, acoustic Lichtenberg figure, tailing bubble structure, jet-induced bubble structures) in a 20–50 kHz ultrasonic field are investigated. Cavitation bubbles tend to move along the direction of pressure drop in the region in front of radiating surface, which are the premise and the foundation of some strong acoustic cavitation structure formation. The nuclei source of above-mentioned acoustic cavitation structures is analyzed. The relationship and mutual transformation of these acoustic cavitation structures are discussed.  相似文献   

18.
One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400–500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects.  相似文献   

19.
Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 × 10?10 to 4.42 × 10?9 mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m?1 of the attenuation coefficient (α) for 35, 72 and 110 kHz, respectively. Furthermore, α/(frequency)2 was not constant, as some previous studies have suggested.  相似文献   

20.
The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96 W cm−2) and treatment time (30, 60, 90 and 120 min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20 kHz and fresh beef at 48 h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (P < 0.05). As indicators of protein oxidation, the carbonyl contents were significantly affected by PUS (P < 0.05). SDS–PAGE analysis showed that PUS treatment increased protein aggregation through disulfide cross-linking, indicated by the decreasing content of total sulfhydryl groups which would contribute to protein oxidation. In addition, changes in protein structure after PUS treatment are suggested by the increases in free sulfhydryl residues and protein surface hydrophobicity. Fourier transformed infrared spectroscopy (FTIR) provided further information about the changes in protein secondary structures with increases in β-sheet and decreases in α-helix contents after PUS processing. These results indicate that PUS leads to changes in structures and oxidation of beef proteins caused by mechanical effects of cavitation and the resultant generation of free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号