首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zirconocenium cations of the type [(MeC5H4)2ZrMe]+, formed by excess methylalumoxane (MAO) from (MeC5H4)2ZrCl2 or (MeC5H4)2ZrMe2 with 13C-labelled ring ligands, are found to form ion pairs with two types of anions, Me-MAO(A)- and Me-MAO(B)-, which differ in their coordinative strengths: More strongly coherent ion pairs [(MeC5H4)2ZrMe+...Me-MAO(B)-] are converted to more easily separable ion pairs [(MeC5H4)2ZrMe+...Me-MAO(A)-] by a sufficient excess of MAO. These react with Al2Me6 to form outer-sphere ion pairs containing the cationic AlMe3 adduct [(MeC5H4)2Zr(mu-Me)2AlMe2]+; formation of the more easily separable ion pairs might be required also for polymerisation catalysis.  相似文献   

2.
A combined experimental and DFT study of the reactions of the titanium imido methyl cation [Ti(NtBu)(Me3[9]aneN3)Me]+ (4+) with AlMe3 and ZnMe2 is described. Reaction of 4+ with AlMe3 gave [Ti(NtBu)(Me3[9]aneN3)(mu-Me)2AlMe2]+ (7+), the first structurally characterized AlMe3 adduct of a transition metal alkyl cation and a model for the presumed resting state in MAO-activated olefin polymerizations. Reaction of 4+ with ZnMe2 also gave a methyl-bridged heterobinuclear species, namely [Ti(mu-NtBu)(Me3[9]aneN3)(mu-Me)2ZnMe]+ (8+), the first directly observed ZnMe2 adduct of a transition metal alkyl cation. At room temperature, all three metal-bound methyls of 8+ underwent rapid exchange with those of free ZnMe2, whereas at 233 K only the terminal Zn-Me group exchanged significantly. Addition of AlMe3 to 8+ quantitatively formed 7+ and ZnMe2. Reaction of 4+ with Cp2ZrMe2 gave [Ti(NtBu){Me2(mu-CH2)[9]aneN3}(mu-CH2)ZrCp2]+ (10+) via a highly selective double C-H bond activation reaction in which both alkyl groups of Cp2ZrMe2 were lost. DFT calculations on models of 7+ confirmed the approximately square-based pyramidal geometries for the bridging methyl groups. Calculations on 8+ found that the formation of the Ti(mu-Me)2Zn moiety is assisted by an Nimide-->Zn dative bond. DFT calculations for the sterically less encumbered methyl cation [Ti(NMe)(H3[9]aneN3)Me]+ found strong thermodynamic preferences for adducts featuring Nimide-->M (M = Al or Zn) interactions. This offers insight into recently observed structure-productivity trends in MAO-activated imido-based polymerization catalysts. Calculations on the metallocenium adducts [Cp2Ti(mu-Me)2AlMe2]+ and [Cp2Ti(mu-Me)2ZnMe]+ are described, each showing alpha-agostic interactions for the bridging methyl groups. For these systems and the imido ones, the coordination of AlMe3 to the corresponding monomethyl cation is ca. 30 kJ mol-1 more favorable than for ZnMe2.  相似文献   

3.
When triisobutylaluminum (AliBu(3)) is added to solutions containing methylaluminoxane (MAO) and rac-[Me(2)Si(ind)(2)ZrCl(2)] (ind: indenyl) in C(6)D(6), NMR spectra show that methyl-bridged mixed-alkylaluminum dimers Al(mu-Me)(2)Me(4-x)iBu(x) predominate. These dimers react with MAO under partial transfer of isobutyl groups and induce a conversion of the initially prevailing cationic trimethylaluminum adduct rac-[Me(2)Si(ind)(2)Zr(mu-Me)(2)AlMe(2) (+)] to rac-[Me(2)Si(ind)(2)Zr(mu-Me)(2)AlMeiBu(+)] and rac-[Me(2)Si(ind)(2)Zr(mu-Me)(2)AliBu(2) (+)]. These species are unstable and release isobutene under formation of zirconocene hydrides.  相似文献   

4.
The solution structures of the metallocenium homogeneous polymerization catalyst ion-pairs [Cp(2)ZrMe](+)[MeB(C(6)F(5))(3)](-) (1), [(1,2-Me(2)Cp)(2)ZrMe](+)[MeB(C(6)F(5))(3)](-) (2), [(Me(2)SiCp(2))ZrMe](+)[MeB(C(6)F(5))(3)](-) (3), [Me(2)C(Fluorenyl)(Cp)ZrMe](+)[FPBA](-) (FPBA = tris(2,2',2' '-nonafluorobiphenyl)fluoroaluminate) (4), [rac-Et(Indenyl)(2)ZrMe](+)[FPBA](-) (5), [(Me(5)Cp)(2)ThMe](+)[B(C(6)F(5))(4)](-) (6), [(Me(2)SiCp(2))Zr(Me)(THF)](+)[MeB(C(6)F(5))(3)](-) (7), [(Me(2)SiCp(2))Zr(Me)(PPh(3))](+)[MeB(C(6)F(5))(3)](-) (8), [(Me(2)SiCp(2))Zr(Me)(THF)](+)[B(C(6)F(5))(4)](-) (9), [(Me(2)Si(Me(4)Cp)(t-BuN)Zr(Me)(solvent)](+)[B(C(6)F(5))(4)](-) (solvent = benzene, toluene) (10), [(Cp(2)ZrMe)(2)(mu-Me)](+)[MePBB](-) (PBB = tris(2,2',2"-nonafluorobiphenyl)borane) (11), and [(Cp(2)Zr)(2)(mu-CH(2))(mu-Me)](+)[MePBB](-) (12), having the counteranion in the inner (1, 3, 4, 5, and 6) or outer (7, 8, 9, 10, 11, and 12) coordination sphere, have been investigated for the first time in solvents with low relative permittivity such as benzene or toluene by (1)H NOESY and (1)H,(19)F HOESY NMR spectroscopy. It is found that the average interionic solution structures of the inner sphere contact ion-pairs are similar to those in the solid state with the anion B-Me (1, 3) or Al-F (5) vectors oriented toward the free zirconium coordination site. The HOESY spectrum of complex 6 is in agreement with the reported solid-state structure. In contrast, in outer sphere contact ion-pairs 7, 8, 9, and 10, the anion is located far from the Zr-Me(+) moiety and much nearer to the Me(2)Si bridge than in 3. The interionic structure of 8 is concentration-dependent, and for concentrations greater than 2 mM, a loss of structural localization is observed. PGSE NMR measurements as a function of concentration (0.1-5.0 mM) indicate that the tendency to form aggregates of nuclearity higher than simple ion-pairs is dependent on whether the anion is in the inner or outer coordination sphere of the metallocenium cation. Complexes 2, 3, 4, 5, and 6 show no evidence of aggregation up to 5 mM (well above concentrations typically used in catalysis) or at the limit of saturated solutions (complexes 3 and 6), while concentration-dependent behavior is observed for complexes 7, 8, 10, and 11. These outer sphere ion-pairs begin to exhibit significant evidence for ion-quadruples in solutions having concentrations greater than 0.5 mM with the tendency to aggregate being a function of metal ligation and anion structure. Above 2 mM, compound 8 exists as higher aggregates that are probably responsible for the loss of interionic structural specificity.  相似文献   

5.
A mechanism based on Michaelis-Menten kinetics with competitive inhibition is proposed for both the Zr-catalyzed carboalumination of α-olefins and the Zr-catalyzed chain growth of aluminum alkyls from ethylene. AlMe(3) binds to the active catalyst in a rapidly maintained equilibrium to form a Zr/Al heterobimetallic, which inhibits polymerization and transfers chains from Zr to Al. The kinetics of both carboalumination and chain growth have been studied when catalyzed by [(EBI)Zr(μ-Me)(2)AlMe(2)][B(C(6)F(5))(4)]. In accord with the proposed mechanism, both reactions are first-order in [olefin] and [catalyst] and inverse first-order in [AlR(3)]. The position of the equilibria between various Zr/Al heterobimetallics and the corresponding zirconium methyl cations has been quantified by use of a Dixon plot, yielding K = 1.1(3) × 10(-4) M, 4.7(5) × 10(-4) M, and 7.6(7) × 10(-4) M at 40 °C in benzene for the catalyst species [rac-(EBI)Zr(μ-Me)(2)AlMe(2)][B(C(6)F(5))(4)], [Cp(2)Zr(μ-Me)(2)AlMe(2)][B(C(6)F(5))(4)], and [Me(2)C(Cp)(2)Zr(μ-Me)(2)AlMe(2)][B(C(6)F(5))(4)] respectively. These equilibrium constants are consistent with the solution behavior observed for the [Cp(2)Zr(μ-Me)(2)AlMe(2)][B(C(6)F(5))(4)] system, where all relevant species are observable by (1)H NMR. Alternative mechanisms for the Zr-catalyzed carboalumination of olefins involving singly bridged Zr/Al adducts have been discounted on the basis of kinetics and/or (1)H NMR EXSY experiments.  相似文献   

6.
The reactions of three types of group 4 metal olefin polymerization catalysts, (C(5)R(5))(2)ZrX(2)/activator, (C(5)Me(5))TiX(3)/MAO (MAO = methylalumoxane), and (C(5)Me(4)SiMe(2)N(t)Bu)MX(2)/activator (M = Ti, Zr), with vinyl chloride (VC) and VC/propylene mixtures have been investigated. Two general pathways are observed: (i) radical polymerization of VC initiated by radicals derived from the catalyst and (ii) net 1,2 VC insertion into L(n)MR(+) species followed by beta-Cl elimination. rac-(EBI)ZrMe(mu-Me)B(C(6)F(5))(3) (EBI = 1,2-ethylenebis(indenyl)) reacts with 2 equiv of VC to yield oligopropylene, rac-(EBI)ZrCl(2), and B(C(6)F(5))(3). This reaction proceeds by net 1,2 VC insertion into rac-(EBI)ZrMe(+) followed by fast beta-Cl elimination to yield [rac-(EBI)ZrCl][MeB(C(6)F(5))(3)] and propylene. Methylation of rac-(EBI)ZrCl(+) by MeB(C(6)F(5))(3)(-) enables a second VC insertion/beta-Cl elimination to occur. The evolved propylene is oligomerized by rac-(EBI)ZrR(+) as it is formed. At high Al/Zr ratios, rac-(EBI)ZrMe(2)/MAO catalytically converts VC to oligopropylene by 1,2 VC insertion into rac-(EBI)ZrMe(+), beta-Cl elimination, and realkylation of rac-(EBI)ZrCl(+) by MAO; this process is stoichiometric in Al-Me groups. The evolved propylene is oligomerized by rac-(EBI)ZrR(+). Oligopropylene end group analysis shows that the predominant chain transfer mechanism is VC insertion/beta-Cl elimination/realkylation. In the presence of trace levels of O(2), rac-(EBI)ZrMe(2)/MAO polymerizes VC to poly(vinyl chloride) (PVC) by a radical mechanism initiated by radicals generated by autoxidation of Zr-R and/or Al-R species. CpTiX(3)/MAO (Cp = C(5)Me(5); X = OMe, Cl) initiates radical polymerization of VC in CH(2)Cl(2) solvent at low Al/Ti ratios under anaerobic conditions; in this case, the source of initiating radicals is unknown. Radical VC polymerization can be identified by the presence of terminal and internal allylic chloride units and other "radical defects" in the PVC which arise from the characteristic chemistry of PCH(2)CHCl(*) macroradicals. However, this test must be used with caution, since the defect units can be consumed by postpolymerization reactions with MAO. (C(5)Me(4)SiMe(2)N(t)Bu)MMe(2)/[Ph(3)C]][B(C(6)F(5))(4)] catalysts (M = Ti, Zr) react with VC by net 1,2 insertion/beta-Cl elimination, yielding [(C(5)Me(4)SiMe(2)N(t)Bu)MCl][B(C(6)F(5))(4)] species which can be trapped as (C(5)Me(4)SiMe(2)N(t)Bu)MCl(2) by addition of a chloride source. The reaction of rac-(EBI)ZrMe(2)/MAO or [(C(5)Me(4)SiMe(2)N(t)Bu)ZrMe][B(C(6)F(5))(4)] with propylene/VC mixtures yields polypropylene containing both allylic and vinylidene unsaturated chain ends rather than strictly vinylidene chain ends, as observed in propylene homopolymerization. These results show that the VC insertion of L(n)M(CH(2)CHMe)(n)R(+) species is also followed by beta-Cl elimination, which terminates chain growth and precludes propylene/VC copolymerization. Termination of chain growth by beta-Cl elimination is the most significant obstacle to metal-catalyzed insertion polymerization/copolymerization of VC.  相似文献   

7.
The formation of adducts of tris(pentafluorophenyl)borane with strongly coordinating anions such as CN(-) and [M(CN)(4)](2)(-) (M = Ni, Pd) is a synthetically facile route to the bulky, very weakly coordinating anions [CN[B(C(6)F(5))(3)](2)](-) and [M[CNB(C(6)F(5))(3)](4)](2-) which are isolated as stable NHMe(2)Ph(+) and CPh(3)(+) salts. The crystal structures of [CPh(3)][CN[B(C(6)F(5))(3)](2)] (1), [CPh(3)][ClB(C(6)F(5))(3)] (2), [NHMe(2)Ph](2)[Ni[CNB(C(6)F(5))(3)](4)].2Me(2)CO (4b.2Me(2)CO), [CPh(3)](2)[Ni[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (4c.2CH(2)Cl(2)), and [CPh(3)](2)[Pd[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (5c.2CH(2)Cl(2)) are reported. The CN stretching frequencies in 4 and 5 are shifted by approximately 110 cm(-1) to higher wavenumbers compared to the parent tetracyano complexes in aqueous solution, although the M-C and C-N distances show no significant change on B(C(6)F(5))(3) coordination. Zirconocene dimethyl complexes L(2)ZrMe(2) [L(2) = Cp(2), SBI = rac-Me(2)Si(Ind)(2)] react with 1, 4c or 5c in benzene solution at 20 degrees C to give the salts of binuclear methyl-bridged cations, [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] and [(L(2)ZrMe)(2)(mu-Me)](2)[M[CNB(C(6)F(5))(3)](4)]. The reactivity of these species in solution was studied in comparison with the known [[(SBI)ZrMe](2)(mu-Me)][B(C(6)F(5))(4)]. While the latter reacts with excess [CPh(3)][B(C(6)F(5))(4)] in benzene to give the mononuclear ion pair [(SBI)ZrMe(+).B(C(6)F(5))(4)(-)] in a pseudo-first-order reaction, k = 3 x 10(-4) s(-1), [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] reacts to give a mixture of L(2)ZrMe(mu-Me)B(C(6)F(5))(3) and L(2)ZrMe(mu-NC)B(C(6)F(5))(3). Recrystallization of [Cp' '(2)Zr(mu-Me)(2)AlMe(2)][CN[B(C(6)F(5))(3)](2)] affords Cp' '(2)ZrMe(mu-NC)B(C(6)F(5))(3) 6, the X-ray structure of which is reported. The stability of [(L(2)ZrMe)(2)(mu-Me)](+)X(-) decreases in the order X = [B(C(6)F(5))(4)] > [M[CNB(C(6)F(5))(3)](4)] > [CN[B(C(6)F(5))(3)](2)] and increases strongly with the steric bulk of L(2) = Cp(2) < SBI. Activation of (SBI)ZrMe(2) by 1 in the presence of AlBu(i)(3) gives extremely active ethene polymerization catalysts. Polymerization studies at 1-7 bar monomer pressure suggest that these, and by implication most other highly active ethene polymerization catalysts, are strongly mass-transport limited. By contrast, monitoring propene polymerization activities with the systems (SBI)ZrMe(2)/1/AlBu(i)(3) and CGCTiMe(2)/1/AlBu(i)(3) at 20 degrees C as a function of catalyst concentration demonstrates that in these cases mass-transport limitation is absent up to [metal] approximately 2 x 10(-5) mol L(-1). Propene polymerization activities decrease in the order [CN[B(C(6)F(5))(3)](2)](-) > [B(C(6)F(5))(4)](-) > [M[CNB(C(6)F(5))(3)](4)](2-) > [MeB(C(6)F(5))(3)](-), with differences in activation barriers relative to [CN[B(C(6)F(5))(3)](2)](-) of DeltaDeltaG = 1.1 (B(C(6)F(5))(4)(-)), 4.1 (Ni[CNB(C(6)F(5))(3)](4)(2-)) and 10.7-12.8 kJ mol(-)(1) (MeB(C(6)F(5))(3)(-)). The data suggest that even in the case of very bulky anions with delocalized negative charge the displacement of the anion by the monomer must be involved in the rate-limiting step.  相似文献   

8.
The synthesis and reactivity of [Tp*Zr(CH2Ph)2][B(C6F5)4] (2, Tp* = HB(3,5-Me2pz)3, pz = pyrazolyl) have been explored to probe the possible role of Tp'MR2+ species in group 4 metal Tp'MCl3/MAO olefin polymerization catalysts (Tp' = generic tris(pyrazolyl)borate). The reaction of Tp*Zr(CH2Ph)3 (1) with [Ph3C][B(C6F5)4] in CD2Cl2 at -60 degrees C yields 2. 2 rearranges rapidly to [{(PhCH2)(H)B(mu-Me2pz)2}Zr(eta2-Me2pz)(CH2Ph)][B(C6F5)4] (3) at 0 degrees C. Both 2 and 3 are highly active for ethylene polymerization and alkyne insertion. Reaction of 2 with excess 2-butyne yields the double insertion product [Tp*Zr(CH2Ph)(CMe=CMeCMe=CMeCH2Ph)][B(C6F5)4] (4). Reaction of 3 with excess 2-butyne yields [{(PhCH2)(H)B(mu-Me2pz)2}Zr(Cp*)(eta2-Me2pz)][B(C6F5)4] (6, Cp* = C5Me5) via three successive 2-butyne insertions, intramolecular insertion, chain walking, and beta-Cp* elimination.  相似文献   

9.
Reactions of [La(AlMe4)3] and [Y(AlMe4)3] with PMe3 show that the phosphine can cleave Ln--CH3--Al linkages, separating Me3Al(PMe3). PMe3 (3 mol equiv) reacts with [Y(AlMe4)3] to give [(YMe3)n] contaminated with by-products containing phosphorus and aluminum. The La-based analog, [(LaMe3)n], is not formed selectively from the reaction of [La(AlMe4)3] with PMe3 or Et2O, which rather yields insoluble La/Al heterobimetallic products. Three multi-nuclear La-based clusters were obtained from a reaction of [La(AlMe4)3] with PMe3 (1 equiv) and identified by X-ray structure analyses. Each cluster exhibits extensive methyl group degradation and contains methylene, methine, or carbide moieties. [La4Al8(CH)4(CH2)2(CH3)20(PMe3)] has a [La4(CH)4] cuboid core supported by AlMe3, Me2AlCH2AlMe2, and PMe3 ligands. [La4Al8(C)(CH)2(CH2)2(CH3)22(toluene)] also contains a cuboid core, [La3Al(C)(CH)2(CH2)], which includes one exo cubic lanthanum atom, and is supported by AlMe3, Me3AlCH2AlMe2, (AlMe4)-, and toluene ligands. The lanthanum atoms in [La5Al9(CH)6(CH3)30] are arranged in a trigonal bipyramidal fashion with (CH) functionalities capping each face. The [La5(CH)6]3- core is formally balanced by three AlMe2 + moieties and is additionally supported by six AlMe3 ligands. The unit cell contains two independent La5 clusters, one with pseudo-C3h and the other with pseudo-D3 symmetry, as well as two molecules of the separation co-product Me3Al(PMe3).  相似文献   

10.
Pulsed field gradient spin-echo (PGSE) NMR and cryoscopic measurements have been performed on a series of homogeneous metallocene polymerization catalyst ion-pairs to determine if aggregation is a significant phenomenon under typical polymerization conditions. Cryoscopic measurements on [(Me5Cp)2ZrMe]+[MeB(C6F5)3]- (1), [rac-Et(Indenyl)2ZrMe]+[MeB(C6F5)3]- (2), [(1,2-Me2Cp)2ZrCHTMS2]+[MeB(C6F5)3]- (3), [Me2Si(Me4Cp)(t-BuN)TiMe]+[MeB(C6F5)3]- (4), [Me2Si(Me4Cp)(t-BuN)ZrMe]+[MeB(C6F5)3]- (5), and [Me2C(Fluorenyl)(Cp)ZrMe]+[MeB(C6F5)3]- (6) were carried out in benzene in the 10-18 millimolal concentration range. PGSE measurements, using (p-tolyl)4Si as an internal standard, were also performed on catalyst ion-pairs 1, 4, 6, [(Me5Cp)2ThMe]+[B(C6F5)4]- (7), [(Me2SiCp2)ZrMe]+[MeB(C6F5)3]- (8), and [Cp2ZrMe]+[MeB(C6F5)3]- (9) in the 0.8-10.0 millimolar range. All results are consistent with a 1:1 ion-pair structural model and show little evidence for ion-quadruples or higher-order aggregates.  相似文献   

11.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   

12.
The reaction of AlMe(3) with (t-Bu(3)PN)(2)TiMe(2) 1 proceeds via competitive reactions of metathesis and C-H activation leading ultimately to two Ti complexes: [(mu(2)-t-Bu(3)PN)Ti(mu-Me)(mu(4)-C)(AlMe(2))(2)](2) 2, [(t-Bu(3)PN)Ti(mu(2)-t-Bu(3)PN)(mu(3)-CH(2))(2)(AlMe(2))(2)(AlMe(3))] 3, and the byproduct (Me(2)Al)(2)(mu-CH(3))(mu-NP(t-Bu(3))) 4. X-ray structural data for 2 and 3 are reported. Compound 3 undergoes thermolysis to generate a new species [Ti(mu(2)-t-Bu(3)PN)(2)(mu(3)-CH(2))(mu(3)-CH)(AlMe(2))(3)] 5. Monitoring of the reaction of 1 with AlMe(3) by (31)P[(1)H] NMR spectroscopy revealed intermediates including (t-Bu(3)PN)TiMe(3) 6. Compound 6 was shown to react with AlMe(3) to give 2 exclusively. Kinetic studies revealed that the sequence of reactions from 6 to 2 involves an initial C-H activation that is a second-order reaction, dependent on the concentration of Ti and Al. The second-order rate constant k(1) was 3.9(5) x 10(-4) M(-1) s(-1) (DeltaH(#) = 63(2) kJ/mol, DeltaS(#) = -80(6) J/mol x K). The rate constants for the subsequent C-H activations leading to 2 were determined to be k(2) = 1.4(2) x 10(-3) s(-1) and k(3) = 7(1) x 10(-3) s(-1). Returning to the more complex reaction of 1, the rate constant for the ligand metathesis affording 4 and 6 was k(met) = 6.1(5) x 10(-5) s(-1) (DeltaH(#) = 37(3) kJ/mol, DeltaS(#) = -203(9) J/mol x K). The concurrent reaction of 1 leading to 3 was found to proceed with a rate constant of k(obs) of 6(1) x 10(-5) s(-1) (DeltaH(#) = 62(5) kJ/mol, DeltaS(#)= -118(17) J/mol x K). Using these kinetic data for these reactions, a stochastic kinetic model was used to compute the concentration profiles of the products and several intermediates with time for reactions using between 10 and 27 equivalents of AlMe(3). These models support the view that equilibrium between 1 x AlMe(3) and 1 x (AlMe(3))(2) accounts for varying product ratios with the concentration of AlMe(3). In a similar vein, similar equilibria account for the transient concentrations of 6 and an intermediate en route to 3. The implications of these reactions and kinetic and thermodynamic data for both C-H bond activation and deactivation pathways for Ti-phosphinimide olefin polymerization catalysts are considered and discussed.  相似文献   

13.
A process of ion‐pair formation in the system Cp2ZrMe2/methylaluminoxane (MAO) has been studied by means of density functional theory quantum‐chemical calculations for MAOs with different structures and reactive sites. An interaction of Cp2ZrMe2 with a MAO of the composition (AlMeO)6 results in the formation of a stable molecular complex of the type Al5Me6O5Al(Me)O–Zr(Me)Cp2 with an equilibrium distance r(Zr–O) of 2.15 Å. The interaction of Cp2ZrMe2 with “true” MAO of the composition (Al8Me12O6) proceeds with a tri‐coordinated aluminum atom in the active site (OAlMe2) and yields the strongly polarized molecular complex or the μ‐Me‐bridged contact ion pair ( d ) [Cp2(Me)Zr(μMe)Al≡MAO] with the distances r(Zr–μMe) = 2.38 Å and r(Al–μMe) = 2.28 Å. The following interaction of the μ‐Me contact ion pair ( d ) with AlMe3 results in a formation of the trimethylaluminum (TMA)‐separated ion pair ( e ) [Cp2Zr(μMe)2AlMe2]+–[MeMAO] with r[Zr–(MeMAO)] equal to 4.58 Å. The calculated composition and structure of ion pairs ( d ) and ( e ) are consistent with the 13C NMR data for the species detected in the Cp2ZrMe2/MAO system. An interaction of the TMA‐separated ion pair ( e ) with ethylene results in the substitution of AlMe3 by C2H4 in a cationic part of the ion pair ( e ), and the following ethylene insertion into the Zr–Me bond. This reaction leads to formation of ion pair ( f ) of the composition [Cp2ZrCH2CH2CH3]+–[Me‐MAO] named as the propyl‐separated ion pair. Ion pair ( f ) exhibits distance r[Zr–(MeMAO)] = 3.88 Å and strong Cγ‐agostic interaction of the propyl group with the Zr atom. We suppose this propyl‐separated ion pair ( f ) to be an active center for olefin polymerization.  相似文献   

14.
We report a molecular dynamics study of the dynamics and energetic of the [H(2)Si(Cp)(2)ZrMe(+)][MeB(C(6)F(5))(3)(-)], IP1, and [Me(2)Si(Cp)(2)ZrMe(+)][B(C(6)F(5))(4)(-)], IP2, ion pairs in benzene. The metrical parameters obtained for the IP1 ion pair are in excellent agreement with the NMR data reported for the strictly related [Me(2)Si(Cp)(2)ZrMe(+)][MeB(C(6)F(5))(3)(-)] ion pair (J. Am. Chem. Soc. 2004, 126, 1448). This validates the molecular modeling protocol we developed. Simulation of the IP2 ion pair suggests that the counterion oscillates between two geometries characterized by a different coordination pattern of the F atoms to the Zr cation. In one case the B(C(6)F(5))(4)(-) coordinates to the metal with two F atoms of the same aryl ring, whereas in the other case two F atoms of different aryl rings are involved in the coordination. Strong solvent reorganization occurs around IP1 and IP2, as well as around the two isolated cations. In the case of the two ion pairs solvent is never coordinated directly to the metal, whereas in the absence of the counterion one benzene molecule is coordinated to the metal through a cation-pi interaction. Free energy calculations result in ion pair free energies of separation of 36.8 and 23.3 kcal/mol for IP1 and IP2, respectively. Simulations with the Zr-B distance fixed at values > 7 A have been also performed. This mimics the situation occurring after counterion displacement by an inserting monomer molecule during olefin polymerization by the title catalysts.  相似文献   

15.
Reactions of (RNH)(3)PNSiMe(3) (3a, R = (t)()Bu; 3b, R = Cy) with trimethylaluminum result in the formation of {Me(2)Al(mu-N(t)Bu)(mu-NSiMe(3))P(NH(t)()Bu)(2)]} (4) and the dimeric trisimidometaphosphate {Me(2)Al[(mu-NCy)(mu-NSiMe(3))P(mu-NCy)(2)P(mu-NCy)(mu-NSiMe(3))]AlMe(2)} (5a), respectively. The reaction of SP(NH(t)Bu)(3) (2a) with 1 or 2 equiv of AlMe(3) yields {Me(2)Al[(mu-S)(mu-N(t)Bu)P(NH(t)()Bu)(2)]} (7) and {Me(2)Al[(mu-S)(mu-N(t)()Bu)P(mu-NH(t)Bu)(mu-N(t)Bu)]AlMe(2)} (8), respectively. Metalation of 4 with (n)()BuLi produces the heterobimetallic species {Me(2)Al[(mu-N(t)Bu)(mu-NSiMe(3))P(mu-NH(t)()Bu)(mu-N(t)()Bu)]Li(THF)(2)} (9a) and {[Me(2)Al][Li](2)[P(N(t)Bu)(3)(NSiMe(3))]} (10) sequentially; in THF solutions, solvation of 10 yields an ion pair containing a spirocyclic tetraimidophosphate monoanion. Similarly, the reaction of ((t)BuNH)(3)PN(t)()Bu with AlMe(3) followed by 2 equiv of (n)BuLi generates {Me(2)Al[(mu-N(t)Bu)(2)P(mu(2)-N(t)Bu)(2)(mu(2)-THF)[Li(THF)](2)} (11a). Stoichiometric oxidations of 10 and 11a with iodine yield the neutral spirocyclic radicals {Me(2)Al[(mu-NR)(mu-N(t)Bu)P(mu-N(t)Bu)(2)]Li(THF)(2)}(*) (13a, R = SiMe(3); 14a, R = (t)Bu), which have been characterized by electron paramagnetic resonance spectroscopy. Density functional theory calculations confirm the retention of the spirocyclic structure and indicate that the spin density in these radicals is concentrated on the nitrogen atoms of the PN(2)Li ring. When 3a or 3b is treated with 0.5 equiv of dibutylmagnesium, the complexes {Mg[(mu-N(t)()Bu)(mu-NH(t)()Bu)P(NH(t)Bu)(NSiMe(3))](2)} (15) and {Mg[(mu-NCy)(mu-NSiMe(3))P(NHCy)(2)](2)} (16) are obtained, respectively. The addition of 0.5 equiv of MgBu(2) to 2a results in the formation of {Mg[(mu-S)(mu-N(t)()Bu)P(NH(t)Bu)(2)](2)} (17), which produces the hexameric species {[MgOH][(mu-S)(mu-N(t)()Bu)P(NH(t)Bu)(2)]}(6) (18) upon hydrolysis. Compounds 4, 5a, 7-11a, and 15-17 have been characterized by multinuclear ((1)H, (13)C, and (31)P) NMR spectroscopy and, in the case of 5a, 9a.2THF, 11a, and 18, by X-ray crystallography.  相似文献   

16.
The N-imidoylamidine ligand i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2 2 was prepared. Direct reactions with AlI3 or AlMe3 afforded [(i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlI2][AlI4] 3 and [i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlMe2][AlMe4].AlMe3, 4 respectively. Thermolysis of 4 gave (i-Pr2C6H3NC(=CH2)(NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlMe2 6. Subsequent reaction with B(C6F5)3 gave the zwitterionic species [(i-Pr2C6H3)N(C(=CH2)NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlMe(mu-MeB(C6F5)3)] 7. In a related reactions of 2, [Ph3C][B(C6F5)4] and AlMe3, AlH3.NEtMe2 or AlD3.NMe3, the complexes [(i-Pr2C6H3N(C(Me)NC6H3i-Pr2)2)AlR2][B(C6F5)4] (R = Me 5, H 8, D 9) and [(i-Pr2C6H3)N(C(=CH2)NC6H3i-Pr2)(C(Me)NC6H3i-Pr2)AlH][B(C6F5)4] 10 are formed. Single-crystal X-ray data for 2, 3, 5 and 10 are reported.  相似文献   

17.
Functionalization of the N2 ligand in the side-on bound dinitrogen complex, [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2), has been accomplished by addition of terminal alkynes to furnish acetylide zirconocene diazenido complexes, [(eta5-C5Me4H)2Zr(C[triple bond]CR)]2(mu2,eta2,eta2-N2H2) (R = nBu, tBu, Ph). Characterization of [(eta5-C5Me4H)2Zr(C[triple bond]CCMe3)]2(mu2,eta2,eta2-N2H2) by X-ray diffraction revealed a side-on bound diazenido ligand in the solid state, while variable-temperature 1H and 15N NMR studies established rapid interconversion between eta1,eta1 and eta2,eta2 hapticity of the [N2H2]2- ligand in solution. Synthesis of alkyl, halide, and triflato zirconocene diazenido complexes, [(eta5-C5Me4H)2ZrX]2(mu2,eta1,eta1-N2H2) (X = Cl, I, OTf, CH2Ph, CH2SiMe3), afforded eta1,eta1 coordination of the [N2H2]2- fragment both in the solid state and in solution, demonstrating that sterically demanding, in some cases pi-donating, ligands can overcome the electronically preferred side-on bonding mode. Unlike [(eta5-C5Me4H)2ZrH]2(mu2,eta2,eta2-N2H2), the acetylide and alkyl zirconocene diazenido complexes are thermally robust, resisting alpha-migration and N2 cleavage up to temperatures of 115 degrees C. Dinitrogen functionalization with [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) was also accomplished by addition of proton donors. Weak Br?nsted acids such as water and ethanol yield hydrazine and (eta5-C5Me4H)2Zr(OH)2 and (eta5-C5Me4H)2Zr(OEt)2, respectively. Treatment of [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2) with HNMe2 or H2NNMe2 furnished amido or hydrazido zirconocene diazenido complexes that ultimately produce hydrazine upon protonation with ethanol. These results contrast previous observations with [(eta5-C5Me5)2Zr(eta1-N2)]2(mu2,eta1,eta1-N2) where loss of free dinitrogen is observed upon treatment with weak acids. These studies highlight the importance of cyclopentadienyl substituents on transformations involving coordinated dinitrogen.  相似文献   

18.
The heptanuclear aluminium-nitrogen cage compound [(AlMe(2))(4)(AlMe)(3)(NHNMe)(3)(N-NMe)(OMe)] contains the unique hydrazinetriide fragment [N-N(Me)](3-) stabilized by coordination to five Al atoms. It was synthesised by thermolysis of the sesqui-hydrazide Al[(μ-NH-NHMe)(2)AlMe(2)](3) in refluxing toluene in the presence of a small quantity of methanol.  相似文献   

19.
Atmospheric pressure chemical ionization mass spectrometry (APCI-MS) has been used to characterize the air-sensitive paramagnetic organouranium azide and nitride complexes [(C5Me5)2UN3(mu-N3)]3 and [(C5Me5)U(mu-I)2]3N, respectively. The trimetallic complex [(C5Me5)U(mu-I)2]3E had been identified by X-ray crystallography, but the data did not definitively identify E as N3- versus O2- or (OH)-, a common problem in heavy-element nitride complexes involving metals with variable oxidation states. A comparison of the 250 degrees C APCI-MS spectra of products made from NaN3 and Na15NNN showed mixed [M]+ and [M + H]+ envelopes at expected ion intensities for the 14N and 15N isotopomers. A compilation of U-C(C5Me5) and U-I bond distance data for U3+ and U4+ is also reported that shows that the ranges for the two oxidation states have significant overlap.  相似文献   

20.
The Al3P3 heterocycle 1 is formed in 94% yield by the reaction of the primary silylphosphane 6a with Me3Al in toluene at 70 degrees C. While 1 crystallizes in an isomerically pure form, in which the six-membered Al3P3 ring prefers the chair conformation and the P-H hydrogen atoms adopt exo positions, it isomerizes in solution to give different diastereomers as shown by 1H and 31P NMR spectroscopy. Intermolecular cyclocondensation of 1 at 110 degrees C in toluene leads, under liberation of methane, to the distorted hexameric-prismatic (AlP)6 cluster 2 in 98% yield. The capability of 1 to function as a building block was further used for the synthesis of the solvent-separated ion pair [Li(thf)2]+ [(Me2Al)4(PR)3]- (3) which was prepared by a one-pot reaction of 1 with nBuLi and Me2AlCl in 15% yield. The structure of 3 was established by an X-ray diffraction analysis. Double deprotonation at phosphorus in 1 with RPLi2 (R = iPr3Si) (molar ratio 1:2), and subsequent transformation of the reaction mixture with Me3Al afforded the novel donor-solvent-free cluster 4 in 62% yield. The latter consists of a rhombododecahedral Al4Li4P6 framework, in which the Li centers are three-coordinate. The reaction of the silylphosphane 6b with the trimethylamine adduct of alane furnishes not only the hexamer (RPAIH)6 (R = (iPrMe2C)-Me2Si) but also the corresponding heptamer 5, which has a nonregular polyhedral (AIP)7 framework and represents the first cluster of this type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号