首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
刘贵立  李荣德  郭玉福 《化学学报》2006,64(16):1631-1634
通过自行开发的计算机软件构造了ZA27合金中α相大角度晶界析出η相及稀土元素的原子集团模型. 采用递归法计算了Al, Zn, La, Y的局域态密度, 计算并分析了α相、η相的总态密度和费米能级, 及稀土对态密度和费米能级的影响. 计算表明: 稀土元素的局域态密度形状与Zn相近, 其与Zn结合的能力大; 稀土元素降低η相的费米能级, 减小Zn, Al电极电位差, 具有抑制晶间腐蚀的作用; 稀土元素不改变α相、η相的总态密度形状, 但使η相的态密度增大, 改变η相的电子结构; 晶格结构对原子的态密度有一定的影响, 掺杂原子的态密度趋于与基体原子态密度相同.  相似文献   

2.
Using the complex Langevin sampling strategy, field theoretic simulations are performed to study the equilibrium phase behavior and structure of symmetric polycation-polyanion mixtures without salt in good solvents. Static structure factors for the segment density and charge density are calculated and used to study the role of fluctuations in the electrostatic and chemical potential fields beyond the random phase approximation. We specifically focus on the role of charge density and molecular weight on the structure and complexation behavior of polycation-polyanion solutions. A demixing phase transition to form a "complex coacervate" is observed in strongly charged systems, and the corresponding spinodal and binodal boundaries of the phase diagram are investigated.  相似文献   

3.
In excited states of atoms and molecules, as well as in time-dependent situations, the one-electron density no longer suffices to completely characterize the electronic state; in addition, one now requires information about the electronic phase or the current density. We show that, for a stationary electronic state, the continuity equation of quantum fluid dynamics represents a differential equation for the electronic phase, which must be solved subject to certain periodicity conditions. These periodicity conditions arise from the nodal topology of the wave function and give rise to quantized vortices of current. The consequences of writing an electronic “wave function” for a many-electron system directly in terms of the single-particle density and phase have been investigated. We have shown that such a procedure leads to the appearance of an “internal magnetic vector potential.” We also establish the connection between the electronic phase and the geometrical (“Berry”) phase accompanying the adiabatic transport of a quantal system around a closed loop in parameter space. This leads to a generalization of the current density concept and allows us to discuss the geometrical phase in terms of the circulation of this current in parameter space.  相似文献   

4.
小角X射线散射法研究CH2Cl2,CHCl3和CCl4对PE液晶结构的影响   总被引:1,自引:0,他引:1  
采用小角X射线散射法研究了CH_2Cl_2、CHCl_3和CCl_4对磷脂酰乙醇胺(PE)液晶结构影响的机理.CH_3Cl_2、CHCl_3和CCl_4对PE液晶结构影响的差别主要是其空间旋转电子云密度分布形状不同所致.空间旋转电子云密度分布呈椭球状的物质有使PE液晶形成六角形H_1相的趋向;呈圆锥状的物质有诱发PE液晶形成立方六角相的趋向;呈球状的物质有使PE液晶形成片层立方相的趋向.  相似文献   

5.
Lattice Monte Carlo simulations are used to study the effect of nonionic surfactant concentration and CO2 density on the micellization and phase equilibria of supercritical CO2/surfactant systems. The interaction parameter for carbon dioxide is obtained by matching the critical temperature of the model fluid with the experimental critical temperature. Various properties such as the critical micelle concentration and the size, shape, and structure ofmicelles are calculated, and the phase diagram in the surfactant concentration-CO2 density space is constructed. On increasing the CO2 density, we find an increase in the critical micelle concentration and a decrease in the micellar size; this is consistent with existing experimental results. The variation of the micellar shape and structure with CO2 density shows that the micelles are spherical and that the extension of the micellar core increases with increasing micellar size, while the extension of the micellar corona increases with increasing CO2 density. The predicted phase diagram is in qualitative agreement with experimental phase diagrams for nonionic surfactants in carbon dioxide.  相似文献   

6.
Na B  Lv R  Xu W  Yu P  Wang K  Fu Q 《The journal of physical chemistry. B》2007,111(46):13206-13210
Irradiation of ultrahigh molecular weight polyethylene (UHMWPE) with a dose of 150 kGy by an electron beam can effectively increase the entanglement density in the amorphous phase and has little influence on the properties of the crystalline phase, which provides examples to comparatively investigate the role of lamellar coupling and entanglement density in determining the strain-hardening effect in semicrystalline polymers. The strain-hardening modulus, deduced from the Haward plots of true stress-strain curves, is inversely temperature-dependent and has a sharp transition around 65 degrees C that corresponds to the mechanical alphaI-process of the crystalline phase for both nonirradiated and irradiated samples, irrespective of the entanglement density in the amorphous phase. Lamellar coupling takes more effect in determining the strain-hardening behavior before the mechanical alphaI-process is activated. With further increasing temperature, lamellar coupling becomes weaker and the role of the entangled amorphous phase is gradually presented. However, the same temperature dependence of the strain-hardening modulus in both nonirradiated and irradiated samples indicates that the strain-hardening behavior in semicrystalline polymer is mostly determined by lamellar coupling rather than by entanglement density.  相似文献   

7.
Hua Li  Tao Wu 《Electrophoresis》2016,37(20):2699-2709
A diffuse‐interface model is presented in this paper for simulation of the evolution of phase transition between the liquid solution and solid gel states for physical hydrogel with nonlinear deformation. The present domain covers the gel and solution states as well as a diffuse interface between them. They are indicated by the crosslink density in such a way that the solution phase is identified as the state when the crosslink density is small, while the gel as the state if the crosslink density becomes large. In this work, a novel order parameter is thus defined as the crosslink density, which is homogeneous in each distinct phase and smoothly varies over the interface from one phase to another. In this model, the constitutive equations, imposed on the two distinct phases and the interface, are formulated by the second law of thermodynamics, which are in the same form as those derived by a different approach. The present constitutive equations include a novel Ginzburg–Landau type of free energy with a double‐well profile, which accounts for the effect of crosslink density. The present governing equations include the equilibrium of forces, the conservations of mass and energy, and an additional kinetic equation imposed for phase transition, in which nonlinear deformation is considered. The equilibrium state is investigated numerically, where two stable phases are observed in the free energy profile. As case studies, a spherically symmetrical solution‐gel phase transition is simulated numerically for analysis of the phase transition of physical hydrogel.  相似文献   

8.
A mean-field theory of deformation-induced microphase segregation in bridging polymeric brushes anchored to two parallel surfaces is presented. Models with isotropic and orientation-dependent liquid-crystalline interactions between segments are considered. For the first model, the problem is similar to that of classical liquid-vapor phase separation, and the phase diagram in the P-T plane has a line of first-order transitions terminating at the critical point. We show that the critical pressure is negative implying that a free brush tethered only to one surface always exists at supercritical conditions and hence cannot undergo the collapse phase transition. In the second model, the free energy density depends on two coupled order parameters, one related to segment density and the other to the orientational order, which strongly modifies the phase behavior. Depending on the grafting density the system is described by a phase diagram of a regular or a singular type. In the regular phase diagram the first-order transition line terminates at the critical point. In a singular diagram, the first-order transition line extends to infinity; the critical point corresponds to infinite pressure so that the system undergoes the phase transition at arbitrary external pressures. Regular phase diagrams correspond to dense grafting, and singular ones to sparse grafting. The change from a regular phase behavior to another occurs at a certain marginal value of the grafting density. On approaching this value the critical point on the regular diagram moves to infinity, logarithmically with the deviation from the critical grafting density. We relate the analytical properties of the free energy density as a function of the segment concentration to the type of the phase diagram and the shape of the coexistence curve in the temperature- concentration plane.  相似文献   

9.
A series of SBS block copolymers diluted with different amounts (0–60 wt%) of three different kinds of oil were investigated: 1) lithene PM (a low molecular weight polybutadiene); 2) a paraffinic mineral oil with its electron density close to that of the polybutadiene (PB) phase; 3) a highly aromatic mineral oil with an electron density close to the polystyrene (PS) phase. All the oils seem to go into the polybutadiene matrix. Paraffinic oil and lithene form a homogeneous phase with PB; the aromatic oil at low concentrations mixes with the PB phase with a high level of inhomogeneity, while at higher concentration partial phase separation occurs. In the undiluted polymer, styrene forms cylinders in hexagonal packing. The distance between cylinders (about 43 nm) is not significantly changed upon dilution up to 33 wt%. Previously proposed changes in the morphology of PS domains at larger oil contents can be related to observed changes in the long period, in the segment length distributions, and in the homogeneities of the phase (density fluctuations). The electron density difference obtained for pure SBS is lower than the theoretical one calculated from the densities of pure PS and pure PB. Dilution by paraffinic oil improves the phase separation.  相似文献   

10.
A theory about first-order phase transition of pure fluids is proposed. The theory is developed by combining grand canonical ensemble with density functional for homogeneous fluids. It is based on the fact that the grand partition function of one macroscopic volume is the product of the grand partition functions of its subvolumes. Density fluctuations of molecules determine the relation between the grand partition function and the free energy density. By combining pairs of subvolumes successively, the free energy density is transformed and rapidly becomes stationary. The stationary curve versus molecule density is convex and its linear segments represent phase transitions. The transform leads to the new grand canonical method to calculate phase equilibrium, which is more robust than classic ones. The transform suggests that classical van der Waals loop is physical and essential to phase transition.  相似文献   

11.
A mathematically rigorous reformulation of molecular quantum mechanics in terms of the particle density operator and a canonically conjugated phase field is given. Using a momentum cutoff, it is shown that the usual molecular Hamiltonian can be expressed in terms of the particle density operator and a rigorously defined phase operator. It is shown that this Hamiltonian converges strongly to the cutoff-free Hamiltonian. In spite of the fact that this Hamiltonian is of second order in the phase operators, all hitherto published expressions are not correct. Unfortunately, the correct formulation destroys the intuitive appeal of using the particle density operator as a coordinate for the many-body problems of quantum chemistry. Unless somebody provides an essential new and clever idea, we propose to resist the fascination of a local quantum field theory of molecular matter in terms of the particle density operator.  相似文献   

12.
Particle-based Monte Carlo simulations were employed to examine the molecular-level effects of bonding density on the retention of alkane and alcohol solutes in reversed-phase liquid chromatography. The simulations utilized octadecylsilane stationary phases with various bonding densities (1.6, 2.3, 2.9, 3.5, and 4.2mumol/m(2)) in contact with a water/methanol mobile phase. In agreement with experiment, the distribution coefficient for solute transfer from mobile to stationary phase initially increases then reaches a maximum with increasing bonding density. A molecular-level analysis of the solute positional and orientational distributions shows that the stationary phase contains heterogeneous regions and the heterogeneity increases with increasing bonding density.  相似文献   

13.
The improvement in the oxygen‐barrier properties of poly(ethylene terephthalate) (PET) by orientation and heat setting was examined. Orientation was carried out at 65 °C by constrained uniaxial stretching to a draw ratio of about 4. Heat setting was performed at temperatures from 90 to 160 °C with the specimen taut. Orientation decreased the permeability of PET to almost one‐third that of the unoriented, amorphous polymer because of decreases in both the diffusion coefficient and the solubility coefficient. The proposed two‐phase model for oriented PET consisted of a permeable isotropic amorphous phase (density = 1.335 g/cm3) with ethylene linkages predominately in the gauche conformation and an impermeable oriented phase (density = 1.38 g/cm3) with ethylene linkages that had transformed from the gauche conformation to the trans conformation during stretching. Chain segments in the trans conformation did not possess crystalline order; instead, they were viewed as forming an ordered amorphous phase. Crystallization by heat setting above the glass‐transition temperature did not dramatically affect the permeability. However, a decrease in the diffusion coefficient, offset by an increase in the solubility coefficient, indicated that crystallization affected the barrier properties of the permeable amorphous phase. Analysis of the barrier data, assuming a two‐phase model with variable density for both the permeable and impermeable phases, revealed that the impermeable phase density increased during crystallization, approaching a value of 1.476 g/cm3. This value is consistent with previous measurements of the density of the defective crystalline phase in PET. The density of the permeable amorphous phase decreased concurrently to about 1.325 g/cm3, indicating the appearance of additional free volume. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1679–1686, 2000  相似文献   

14.
合成了一系列液体氯丁二烯-甲基丙烯酸羟乙酯共聚物(CP-HEMA)聚氨酯-聚苯乙烯互穿网络聚合物(PU-ST-IPN)。表征了物理性能和密度行为。密度效应在体系中较为明显,其增值为0.030g/cm3,同时其抗张强度的提高也是显著的。通过60%PU透射电镜照片,观察了微相分离形态结构。分散于PU相中的ST微区尺寸大约为500-4000Å。与PU-MMA-IPN体系比较,该体系相界分明,相分离程度大。直到60%PU,没有相转变发生,ST相是分散相,PU相是连续相。形成PU相的相对反应速率比苯乙烯的聚合速度快是造成上述现象的主要原因。微区尺寸分布和密度效应证明,此IPN体系在分散相的界面上两个网络是互穿缠结的。  相似文献   

15.
16.
In an athermal blend of nanoparticles and homopolymer near a hard wall, there is a first order phase transition in which the nanoparticles segregate to the wall and form a densely packed monolayer above a certain nanoparticle density. Previous investigations of this phase transition employed a fluids density functional theory (DFT) at constant packing fraction. Here we report further DFT calculations to probe the robustness of this phase transition. We find that the phase transition also occurs in athermal systems at constant pressure, the more natural experimental condition than constant packing fraction. Adding nanoparticle-polymer attractions increases the nanoparticle transition density, while sufficiently strong attractions suppress the first-order transition entirely. In this case the systems display a continuous transition to a bulk layered state. Adding attractions between the polymers and the wall has a similar effect of delaying and then suppressing the first-order nanoparticle segregation transition, but does not lead to any continuous phase transitions.  相似文献   

17.
Dialkyl lecithin dispersions in water exhibit two phase transitions upon cooling from the lamellar phase (L(α)). At the main transition (T(M)) the L(α) phase changes to a ripple (gel) phase (P(β')) which then transforms to a second gel phase (L(β')) at the "pretransition" (T(P)). We have made accurate density measurements through the various phases for two lecithins having unequal chains: 1-myristoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (MSPC) and 1-stearoyl-2-myristoyl-sn-glycero-3-phosphatidylcholine (SMPC). The measurements were carried out over five heat/cool cycles from 5 to 55 °C, followed by cooling back to 5 °C. The samples were then held at 50 °C for 24 hours, followed by a further three cool/heat cycles. For SMPC we observe an increase in density of the gel phases over the first 5 cycles, followed by much smaller changes after incubation at 50 °C. The lamellar phase also shows an increase in density, albeit much smaller. This parallels the behaviour of 1,2-di-palmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 1,2-di-myristoyl-sn-glycero-3-phosphatidylcholine (DMPC) reported earlier (Jones et al., Liquid Crystals 32, 1465 (2005)). For MSPC we observe a decrease in density within the gel phases while T(P) almost disappears after the first cycle. The lamellar phase shows little evidence of any change with each cycle. Within the lamellar phases there is a marked reduction in density on approaching T(M), which is attributed to the formation of transitory gel phase domains. Additional measurements by DSC and X-ray diffraction show that the changes in densities are not accompanied by large changes in transition enthalpies or phase structures. NMR data indicate that the pretransitional event within the L(α) phase is accompanied by ordering of the alkyl chains. The results indicate that the exact nature of the lipid alkyl chains could play a key role in the formation of gel phase patches within membrane bilayers. Their detailed chemical structures merit more attention than by simply assuming a uniform "bending energy" to describe the behaviour.  相似文献   

18.
The adsorption isotherms of phenol were acquired by frontal analysis on six different reversed phase adsorbents from five different organic solvent solutions. The end-capped octadecyl columns only differed in the bonding density of the C(18) ligands. The inverse method was used to confirm the estimated isotherm parameters derived from the frontal experiments. The effect of the bonding density of the end-capped octadecyl bonded phase on the adsorption properties of phenol from different mobile phase compositions was investigated. The adsorption behavior of phenol has changed from Langmuir type to BET type with the change of the organic modifier and the bonding density of the adsorbent.  相似文献   

19.
In Supercritical Fluid Chromatography (SFC), the key chromatographic parameters of any compound, its retention and efficiency, are known to strongly depend on the density of the mobile phase. This indicates that iso-density, also called isopycnic, plots drawn on the pressure-temperature plane can provide an effective tool to analyze how SFC systems may operate under different combinations of inlet and outlet pressures and column temperature. To effectively use these isopycnic plots in designing the operations of SFC systems, however, a deeper understanding of the factors behind the dependence of the performance of these systems on the mobile phase density is required. The nature of this density dependence is explored with reference to the key physical properties of the mobile phase, its viscosity, diffusivity and solubility. This study is focused on the use of pure carbon dioxide as the mobile phase, but this method of investigation is applicable for other mobile phase combinations as well.  相似文献   

20.
Berthod A  Schmitt N 《Talanta》1993,40(10):1489-1498
Countercurrent chromatography (CCC) is a separation technique in which the stationary phase is a liquid. The liquid stationary phase retention is a critical problem in CCC. The retention of 18 organic solvents in a hydrodynamic CCC apparatus was measured with an aqueous mobile phase, the centrifuge spin rate and the mobile phase flow rate being constant, 800 rpm and 2 ml/min, respectively. Conversely, water retention was measured when the 18 solvents were the mobile phases. A direct relationship between the liquid stationary phase retention and the phase density difference was found. The liquid phase density difference is the most important parameter for stationary phase retention in a hydrodynamic CCC apparatus with coiled tubes. The chromatographic retention of formanilide was measured in biphasic systems and expressed as the formanilide partition coefficient. It is shown that the partition coefficient correlates with the Reichardt polarity index of the organic solvent when the liquid stationary phase retention volume does not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号