首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
煤粉旋风燃烧过程流场特性研究   总被引:1,自引:0,他引:1  
煤粉旋风燃烧器可用于工业加热过程,实现以煤代油,本论文根据旋流燃烧流动特点,采用能考虑非均向湍流应力的雷诺应力模型,对煤粉旋风燃烧器内气流流动过程场进行数值模拟计算,流场计算结果表明,燃烧室几何参数对其内部的流动特性有很大的影响。计算结果与流场实验测试相吻合。  相似文献   

2.
以燃烧器四角切圆布置的超超临界塔式锅炉炉膛内的流动换热为背景,利用Fluent软件通过数值模拟研究了一个物理和几何结构完全对称的三维炉膛内冷态流场变化情况,选用6个燃烧器喷嘴出口速度作为不同的工况来计算炉内的流场,速度变化范围为5~30 m/s,湍流模型采用雷诺应力模型。计算结果表明,随着出口气流速度的增大,流动呈现出的切圆半径越来越大;当喷嘴出口速度小于等于10 m/s时,在所用计算模型下,流体速度场呈中心对称结构,切圆中心位于中央;随着出口速度的持续增加,流场从中心对称结构逐步转变成非中心对称结构,切圆中心发生明显偏斜.数值结果表明,即使几何结构完全对称且边界物理条件也完全对称的燃烧器四角切圆布置的炉膛中的流动,仍然可能是非对称的,这是造成烟气侧热偏差的可能的原因之一。  相似文献   

3.
使用RKE模型和RSM模型对某旋流燃烧器进行3D冷态湍流流动模拟计算,并从精度、计算量和收敛性3个方面对两个模型进行了比较。通过与PIV所测得的出口冷态流场对比表明,两个模型均可以较准确地预测燃烧器出口的宏观流场、径向速度和轴向速度分布。相比较而言,RSM模型在预报流场速度峰值的位置、回流区的大小、主流射流宽度等方面比RKE模型更准确一些,在收敛性上RSM模型也占优,而在计算量上,RSM模型略大一些,但对反应流计算,两个模型计算量基本一致。研究表明在模拟旋流燃烧器流场时RSM模型具有一定的优越性,建议优先考虑。  相似文献   

4.
本文采用非正交曲线坐标系下非交错网格的SIMPLE方法对航空发动机加力燃烧室无化学反应的湍流流场进行了数值计算,湍流模型采用k-ε双方程模型.差分网格采用分区方法生成,计算时对整个流场进行分区迭代直至得到收敛结果.加力燃烧室湍流流场数值计算结果合理.  相似文献   

5.
 分析了激光在气体中传输时采用等压近似线性方程求解流场密度分布的优缺点,在高低速流场统一计算模型的基础上提出了基于压力原变量的分步求解的弱可压缩流计算模型,并分析了该模型的特点。采用该模型结合标量衍射理论对连续激光在封闭充气管道中受到的气体热效应影响进行了数值仿真。仿真结果与实验结果的对比表明,弱可压缩流计算模型能更精确地反映非自由边界热对流对气体密度分布的影响,进而反映流场对光束的影响。这说明弱可压缩流计算模型能较好地适应内通道光传输问题的仿真研究。  相似文献   

6.
单只文丘利油燃烧器冷热态流场的数值模拟   总被引:3,自引:0,他引:3  
针对文丘利油燃烧器流场数值模拟存在的特殊性,提出了一种分析模型和处理方法,进行了数值模拟结果与试验数据的对比分析,据此进一步对某舰船锅炉文丘利油燃烧器的冷热态流场进行了预测分析。  相似文献   

7.
提出了一种考虑碳烟颗粒的气氧煤油发动机尾焰红外辐射特性计算方法,首先对气氧煤油发动机纯气相内流场进行计算,然后以喷管喉部作为气体和固体碳烟颗粒的入口边界计算发动机尾焰流场,最后以发动机流场参数分布为基础,采用有限体积法和伪气体理论对发动机尾焰红外辐射特性进行计算。进行了气氧煤油发动机点火实验,并将计算结果与实验结果进行对比分析。结果表明,燃烧室内两个压力测量点的测量与计算误差分别为1.4%和3.4%,燃烧室内计算温度与热力学计算误差为2.16%,证明了燃烧室流场计算模型的准确性。含有碳烟颗粒的尾焰流场计算结果与热像仪测量结果比较吻合,证明了尾焰流场计算方法和模型的准确性。4.3 μm波段尾焰红外成像计算结果与工作在4.3 μm波段的红外热像仪测量结果吻合比较一致,证明了尾焰红外辐射特性计算方法和模型的准确性。  相似文献   

8.
采用有限差分方法对不同工况下三维旋流液雾燃烧进行了直接数值模拟,其中液滴的跟踪在拉格朗日框架中进行,液滴的蒸发相变采用无限热传导蒸发模型描述,气相燃烧采用自适应单步反应机理,模拟中采用的模型燃烧器尽可能逼近真实的燃气轮机旋流燃烧器.结果发现,旋流液雾燃烧流动和火焰结构受到旋流方式和当量比的影响,流场中出现了反平行排列的...  相似文献   

9.
旋转离心叶轮与叶片扩压器间耦合流动的数值分析   总被引:3,自引:1,他引:2  
以离心压气机内部动静部件耦合的非定常流场为研究对象,本文提出了动静耦合统一正命题型式,采用κ-ε紊流模型、同步计算动静耦合流场的方法,分别对下同流量工况下离心叶轮与叶片扩压器内部非定常流动进行了数值计算。计算结果与激光多普勒测量结果进行了比较:在设计工况下,离心叶轮与叶片扩压器相互匹配较好,而在非设计工况下,流道内流动趋向恶化。说明计算结果是有一定的可信度;计算结果同时说明,只有采用非定常算法,才有可能较好地描述动静部件耦合的流场。  相似文献   

10.
水力旋流器湍流流动的数值模拟   总被引:20,自引:0,他引:20  
本文采用雷诺应力模型计算了水力旋流器的水相湍流流场,计算结果与实验数据吻合很好。与相关文献中采用修正的κ-ε模型的计算结果比较,本文采用雷诺应力模型的计算结果更接近于实验结果。计算得到了水力旋流器内的流线图、等压线以及零速包络面。  相似文献   

11.
非正交贴体网格体系模拟炉内燃烧过程   总被引:1,自引:0,他引:1  
开发了贴体曲线坐标系下煤粉燃烧全过程模拟程序,可在任意3-d贴体曲线坐标系下进行炉内气固流动,化学反应和辐射传热等完整的燃烧过程模拟。对某台670 t/h锅炉,采用了一种新的贴体曲线网格体系,其一族网格线从燃烧器喷口向外呈放射状展开,最外侧贴于炉膛壁面,燃烧器以上网格线扭转角度逐渐变化,至炉膛上部与壁面平行。计算结果与采用常规直角网格体系的结果相比,伪扩散误差明显减小,燃烧参数分布趋势接近实际分布。  相似文献   

12.
Flame flashback is a major challenge in premixed combustion. Hence, the prediction of the minimum flow velocity to prevent boundary layer flashback is of high technical interest. This paper presents an analytic approach to predicting boundary layer flashback limits for channel and tube burners. The model reflects the experimentally observed flashback mechanism and consists of a local and global analysis. Based on the local analysis, the flow velocity at flashback initiation is obtained depending on flame angle and local turbulent burning velocity. The local turbulent burning velocity is calculated in accordance with a predictive model for boundary layer flashback limits of duct-confined flames presented by the authors in an earlier publication. This ensures consistency of both models. The flame angle of the stable flame near flashback conditions can be obtained by various methods. In this study, an approach based on global mass conservation is applied and is validated using Mie-scattering images from a channel burner test rig at ambient conditions. The predicted flashback limits are compared to experimental results and to literature data from preheated tube burner experiments. Finally, a method for including the effect of burner exit temperature is demonstrated and used to explain the discrepancies in flashback limits obtained from different burner configurations reported in the literature.  相似文献   

13.
本文给出一种弯管和文丘里管组合结构的新型浓淡煤粉燃烧器,并分别对弯管、文丘里管和这种弯管和文丘里管组合结构燃烧器内的气固两相流动进行了数值模拟。采用Euler-Lagrange方法和离散相模型(DPM)研究气固两相流动,气相湍流采用分离涡(DES)模拟方法,固相湍流采用离散随机游动(DRW)模型。结果表明,这三种结构对...  相似文献   

14.
The performance of PIV system for combusting flow was evaluated by using artificial images generated from computer graphics and experimental data. The influences of shutter speed, filter, laser power and the PIV algorithms on the measurement uncertainty were studied for optimizing the performance of the PIV system. This system was applied to the spray combustor model for boiler, and the flow patterns with and without combustion were elucidated. Results showed that the burner flow generates complex three-dimensional flow pattern, which contributes to highly mixed fuel flow in the combustor. Although the flow pattern with and without combustion is similar, the growth of burner flow area and an increase in velocity magnitude are found in the flow field by the influence of chemical reactions in combustion.  相似文献   

15.
Conditional Source-term Estimation (CSE) is a closure model for turbulence–chemistry interactions. This model uses the first-order CMC hypothesis to close the chemical reaction source terms. The conditional scalar field is estimated by solving an integral equation using inverse methods. It was originally developed and has been used extensively in non-premixed combustion. This work is the first application of this combustion model for a premixed flame. CSE is coupled with a Trajectory Generated Low-Dimensional Manifold (TGLDM) model for chemistry. The CSE-TGLDM combustion model is used in a RANS code to simulate a turbulent premixed Bunsen burner. Along with this combustion model, a similar model which relies on the flamelet assumption is also used for comparison. The results of these two approaches in the prediction of the velocity field, temperature and species mass fractions are compared together. Although the flamelet model is less computationally expensive, the CSE combustion model is more general and does not have the limiting assumption underlying the flamelet model.  相似文献   

16.
In this study, based on different numberical simulation methods, the gas-liquid two-phase flow is taken as the research object. By coupling the continuity equation of incompressible fluid, Navier-Stokes equation, electric field equation and other control equations, a multi-field coupling model for rising bubbles in viscous fluids is established, and numerical simulations are carried out. The two-phase popularity of coupled electric field is studied, and the effect of electric field on bubble motion is analyzed.The Level-set and phase field method are used to track the changes of deformation and rupture during the rising of the bubble. The accuracy and validity of the two methods are verified by mass conservation. At the same time, the calculation area is determined for the accuracy of calculation, and the optimal mesh size is calculated by using mesh independence test. Compared with the level set method, the phase field method has a certain improvement in the calculation efficiency and accuracy. Among them, the calculation efficiency of the phase field calculation method in the same grid is increased by 5 times, and by 3 times in the vertical electric field environment. Moreover, using the phase field method is easier to capture the bubbles slight changes while they are rising, and the quality of the simulation results is better.The simulation analysis of bubble rising process under coupled electric field by two methods shows that under the interaction of electrostatic force, buoyancy and surface tension, the bubble is stretched into an ellipsoid along the direction of the electric field line, and the ratio of the length to the short axis is proportional to the applied electric field strength. In addition, the bubble rising velocity is affected by the electric field, and the vertical electric field accelerates the rising of the bubble.  相似文献   

17.
The lab-scale burner device with proprietary design was used for combustion of diesel fuel in a steam-enhanced regime. This operation mode ensures drastic intensification of liquid hydrocarbon combustion due to supply of superheated steam jet to the combustion zone. The particle image velocimetry technique was used for study of velocity field in the burner flame. The method of seeding of flow zone with new kind of tracers (micro-sized silica particles produced from silicon oil added to liquid fuel) was tested.  相似文献   

18.
航空发动机内外涵道三维粘性流场的数值模拟   总被引:1,自引:1,他引:0  
本文用数值模拟的方法,对某涡扇发动机从风扇入口到增压级出口以及整个外涵道的稳态流场进行了联算和分析,计算是在我们自主搭建的分布式平行网络平台上进行的。计算表明风扇叶片沿叶高马赫数变化较大,从叶根附近的0.56变化到叶顶的1.34。本文得出了比较详细的内外涵道流场的信息,为叶片优化设计以及气动声学评估提供了依据。  相似文献   

19.
Premixed low-pressure flat-flame reactors can be used to investigate the synthesis of nanoparticles. The present work examines the flow field inside such a reactor during the formation of carbon (soot) and iron oxide (from Fe(CO)5) nanoparticles, and how it affects the measurements of nanoparticle size distribution. The symmetry of the flow and the impact of buoyancy were analysed by three-dimensional simulations and the nanoparticle size distribution was obtained by particle mass spectrometry (PMS) via molecular beam sampling at different distances from the burner. The PMS measurements showed a striking, sudden increase in particle size at a critical distance from the burner, which could be explained by the flow field predicted in the simulations. The simulation results illustrate different fluid mechanical phenomena which have caused this sudden rise in the measured particle growth. Up to the critical distance, buoyancy does not affect the flow, and an (almost) linear growth is observed in the PMS experiments. Downstream of this critical distance, buoyancy deflects the hot gas stream and leads to an asymmetric flow field with strong recirculation. These recirculation zones increase the particle residence time, inducing very large particle sizes as measured by PMS. This deviation from the assumed symmetric, one-dimensional flow field prevents the correct interpretation of the PMS results. To overcome this problem, modifications to the reactor were investigated; their suitability to reduce the flow asymmetry was analysed. Furthermore, ‘safe’ operating conditions were identified for which accurate measurements are feasible in premixed low-pressure flat-flame reactors that are transferrable to other experiments in this type of reactor. The present work supports experimentalists to find the best setup and operating conditions for their purpose.  相似文献   

20.
In spray-flame synthesis of nanoparticles, a precise understanding of the reaction processes is necessary to find optimal process parameters for the formation of the desired products. Coupling the chemistries of flame, solvent, and gas-phase species initially formed from the particle precursor in combination with the complex flow geometry of the spray flame means a special challenge for the modeling of the reaction processes. A new burner has been developed that is capable to observe the reaction of precursor solutions frequently used in spray-flame synthesis. The burner provides an almost flat, laminar, and steady flame with homogeneous addition of a fine aerosol and thus enables detailed investigation and modeling of the coupled reactions independent of spray formation and turbulent mixing. With its two separate supply channel matrices, the burner also enables the use of reactants that would otherwise react with each other already before reaching the flame. These features enable the investigation of a wide range of flame-based synthesis methods for nanoparticles and, due to the flat-flame geometry, kinetics models for these processes can be developed and validated. This work describes the matrix burner development and its gas flow optimization by simulation. Droplet-size distributions generated by ultrasonic nebulization and their interaction with the burner structure are investigated by phase-Doppler anemometry. As an example for nanoparticle-forming flames from solutions, iron-oxide nanoparticle-generating flames using iron(III) nitrate nonahydrate dissolved in 1-butanol were investigated. This effort includes measurements of two-dimensional maps of the flame temperature by a thermocouple and height-dependent concentration profiles of the main species by time-of-flight mass spectrometry. Experimental data are compared with 1D simulations using a reduced reaction mechanism. The results show that the new burner is well suited for the development of reaction models for precursors supplied in the liquid phase usually applied in spray-flame synthesis configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号