首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Organic mercurial compounds are the most specific and sensitive reagents for reaction with the sulfhydryl groups (SHs) in peptides and proteins because of the strong mercury-sulfur affinity. Using the monofunctional organic mercury ion RHg(+) as a mass spectrometry (MS)-tag has the advantages of reacting with one sulfhydryl group, offering definite mass shift, and especially stable and characteristic nonradioactive isotopic distribution. Mass spectrometric analysis of derivatized sulfhydryls in peptides/proteins is thus an alternative for precisely counting the number of sulfhydryl groups and disulfide bonds (SS). Here the tags used include monomethylmercury chloride, monoethylmercury chloride, and 4-(hydroxymercuri) benzoic acid. The feasibility of this strategy is demonstrated using HPLC/ESI-MS to count SHs and SS in model peptides/proteins, i.e., glutathione, phytochelatins, lysozyme and beta-lactoglobulin, which contain increasing SHs and various SS linkages.  相似文献   

2.
Picolinamidination of amino groups in peptides was carried out using ethyl picolinimidate tetrafluoroborate synthesized from picolinamide and triethyloxonium tetrafluoroborate. The N-terminal amino group as well as the epsilon-amino group of lysine were derivatized. The matrix-assisted laser desorption/ionization (MALDI) signal of a peptide was enhanced 20-35-fold upon picolinamidination depending on the number of amino groups derivatized. The signal enhancement effect is much higher than that of acetamidination or guanidination previously reported. Improved protein identification by mass mapping of the derivatized peptides was demonstrated.  相似文献   

3.
Protocols for the analysis of the sulfhydryl content in peptides and proteins using chemical derivatization by organomercurial reagents and analysis by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) have been developed. The number of reactive cysteine residues in peptides and proteins can be determined by exploiting the affinity and selectivity of organomercurial reagents for macromolecular thiols. Mass shifts observed in MALDI mass spectra obtained before and after cysteine derivatization with p-hydroxy-mercuribenzoate (pHMB) permit the number of free sulfhydryl groups to be determined. The pHMB derivative of each free cysteine residue provides a mass shift of 321 u, overcoming limitations in the mass resolution of MALDI time-of-flight mass spectrometry. Reactive cysteine residues in a macromolecule can be selectively derivatized by using a fivefold molar excess of pHMB reagent. Total sulfhydryl content (i.e., cysteine and cystine) can be determined after disulfide reduction. However, analyses for total cysteine content are more complex, requiring protein denaturation, cystine reduction, and sample purification before derivatization and analysis by MALDI-MS. Conditions for sample denaturation, alkyl-phosphine reduction, pHMB derivatization, and sample purification by analyte adsorption and desalting on protein transfer membranes, are described for cysteine/cystine analysis performed on microgram (10–200 pmol) quantities of somatostatin, insulin, hemoglobin, and β-lactoglobulin.  相似文献   

4.
To improve the detection of phosphorylated peptides/proteins, we developed a novel protocol that involves the chemical derivatization of phosphate groups with a chemically engineered biotinylated-tag (biotin-tag), possessing three functional domains; a biotin group for binding to avidin, a base-labile 4-carboxy fluorenyl methoxycarbonyl (4-carboxy Fmoc) group, and a nucleophilic sulfhydryl moiety on the side-chain of cysteine. Using this approach, the derivatized, enzymatically digested peptides were selectively separated from unrelated sequences and impurities on immobilized avidin. Unlike previously published phosphopeptide enrichment procedures, this approach upon treatment with mild base liberates a covalently bound Gly-Cys analog of the peptide(s) of interest, exhibiting improved RP-HPLC retention and MS ionization properties compared with the precursor phosphopeptide sequence. The results obtained for a model peptide Akt-1 and two protein digests, demonstrated that the method is highly specific and allows selective enrichment of phosphorylated peptides at low concentrations of fmol/microL.  相似文献   

5.
Direct reductive methylation of peptides is a common method for quantitative proteomics. It is an active derivatization technique; with participation of the dimethylamino group, the derivatized peptides preferentially release intense a1 ions. The advantageous generation of a1 ions for quantitative proteomic profiling, however, is not desirable for targeted proteomic quantitation using multiple reaction monitoring mass spectrometry; this mass spectrometric method prefers the derivatizing group to stay with the intact peptide ions and multiple fragments as passive mass tags. This work investigated collisional fragmentation of peptides whose amine groups were derivatized with five linear ω-dimethylamino acids, from 2-(dimethylamino)-acetic acid to 6-(dimethylamino)-hexanoic acid. Tandem mass spectra of the derivatized tryptic peptides revealed different preferential breakdown pathways. Together with energy resolved mass spectrometry, it was found that shutting down the active participation of the terminal dimethylamino group in fragmentation of derivatized peptides is possible. However, it took a separation of five methylene groups between the terminal dimethylamino group and the amide formed upon peptide derivatization. For the first time, the gas-phase fragmentation of peptides derivatized with linear ω-dimethylamino acids of systematically increasing alkyl chain lengths is reported. Figure
?  相似文献   

6.
Tryptic peptides were labeled with sulfonic acid groups at the N-termini using an improved chemistry. The derivatization was performed in common aqueous buffers on peptides adsorbed onto a ZipTip trade mark C(18), thus allowing simultaneous desalting/concentration of the sample. When only Arg-terminating peptides were considered, the procedure from adsorption onto the ZipTip until analysis by MALDI-PSD took about 10 min and several samples could be worked on in parallel. The resulting improved post-source decay (PSD) fragmentation produced spectra containing only y-ions. PSD amino acid sequencing of underivatized and derivatized synthetic peptides was compared. From the sequence information obtained from derivatized peptides isolated by ion selection from tryptic in-gel digests, a protein was correctly identified which was difficult to analyze from an unclear peptide mass fingerprint analysis. The method was also applied to the identification and localization of phosphorylated Ser and Tyr residues in native and synthetic peptides.  相似文献   

7.
A novel method of amino acid analysis using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups) was applied to measure glycated amino acids in order to quantify glycated peptides and evaluate the degree of glycation of peptide. Amino and carboxyl groups of amino acids were derivatized with 1‐bromobutane so that the hydrophobicities and basicities of the amino acids, including glycated amino acids, were improved. These derivatized amino acids could be detected with high sensitivity using LC‐MS/MS. In this study, 1‐deoxyfructosyl‐VHLTPE and VHLTPE, which are N‐terminal peptides of the β‐chains of hemoglobin, were selected as target compounds. After reducing the peptide sample solution with sodium borohydride, the obtained peptides were hydrolyzed with hydrochloric acid. The released amino acids were then derivatized with 1‐bromobutane and analyzed with LC‐MS/MS. The derivatized amino acids, including glycated amino acids, could be separated using an octadecyl silylated silica column and good sharp peaks were detected. We show a confirmatory experiment that the proposed method can be applied to evaluate the degree of glycation of peptides, using mixtures of glycated and non‐glycated peptide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Piperazine-based derivatives, including 1-(2-pyridyl)piperazine (2-PP), 1-(2-pyrimidyl)piperazine (2-PMP), 1-(4-pyridyl)piperazine (4-PP), and 1-(1-methyl-4-piperidinyl)piperazine (M-PP), were used for the derivatization of carboxyl groups on peptides with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 1-hydroxy-7-azabenzotriazole (HOAt) as coupling reagents, and trifluoroacetic acid (TFA) as activator. Taking synthetic peptides RVYVHPI (RI-7) and APGDRIYVHPF (AF-11) as samples, the yields of derivatized peptides by 2-PP, 2-PMP and 4-PP were higher than 94%. The effect of piperazine derivatives on the signals of tryptic digests of α-transferrin and bovine serum albumin (BSA) was investigated, and it was found that peptides derivatized by 2-PP and 2-PMP exhibited obviously improved ionization efficiency. Furthermore, comparison of identified peptides before and after derivatization showed that peptides with low molecular weight (MW) and high pI value were preferably detected after derivatization. In addition, after derivatization with 2-PP and 2-PMP, protein myelin basic protein S, 20 kDa protein, and histone H were confidently identified from the tryptic digests of two fractions of rat brain protein separated by reversed-phase high-performance liquid chromatography (HPLC), indicating the potential application of 2-PP and 2-PMP for the highly sensitive determination of peptides in comprehensive proteome analysis.  相似文献   

9.
The stabilization of the reduction state of proteins and peptides is very important for the monitoring of protein-protein, protein-DNA and protein-xenobiotic interactions. The reductive state of protein or peptide is characterized by the reactive sulfhydryl group. Glutathione in the reduced (GSH) and oxidized (GSSG) forms was studied by cyclic voltammetry. Tris(2-carboxyethyl)phosphine (TCEP) as the disulfide bond reductant and/or hydrogen peroxide as the sulfhydryl group oxidant were used. Cyclic voltammetry measurements, following the redox state of glutathione, were performed on a hanging mercury drop electrode (HMDE) in borate buffer (pH 9.2). It was shown that in aqueous solutions TCEP was able to reduce disulfide groups smoothly and quantitatively. The TCEP response at -0.25 V vs. Ag/AgCl/3 M KCl did not disturb the signals of the thiol/disulfide redox couple. The origin of cathodic and anodic signals of GSH (at -0.44 and -0.37 V) and GSSG (at -0.69 and -0.40 V) glutathione forms is discussed. It was shown that the application of TCEP to the conservation of sulfhydryl groups in peptides and proteins can be useful instrument for the study of peptides and proteins redox behavior.  相似文献   

10.
Wang WH  Dong JL  Baker GL  Bruening ML 《The Analyst》2011,136(18):3595-3598
Polymer brushes orthogonally derivatized with oxotitanium and nitrilotriacetate-Fe(III) groups enrich both mono- and multi-phosphorylated peptides for mass spectrometry analysis.  相似文献   

11.
Peptide modification by a quaternary ammonium group containing a permanent positive charge is a promising method of increasing the ionization efficiency of the analyzed compounds, making ultra-sensitive detection even at the attomolar level possible. Charge-derivatized peptides may undergo both charge remote (ChR) and charge-directed (ChD) fragmentation. A series of model peptide conjugates derivatized with N,N,N-triethyloammonium (TEA), 1-azoniabicyclo[2.2.2]octane (ABCO), 2,4,6-triphenylopyridinium (TPP) and tris(2,4,6-trimetoxyphenylo)phosphonium (TMPP) groups were analyzed by their fragmentation pathways both in collision-induced dissociation (CID) and electron-capture dissociation (ECD) mode. The effect of the fixed-charge tag type and peptide sequence on the fragmentation pathways was investigated. We found that the aspartic acid effect plays a crucial role in the CID fragmentation of TPP and TEA peptide conjugates whereas it was not resolved for the peptides derivatized with the phosphonium group. ECD spectra are mostly dominated by cn ions. ECD fragmentation of TMPP-modified peptides results in the formation of intense fragments derived from this fixed-charge tag, which may serve as reporter ion.  相似文献   

12.
A series of synthetic peptides (3-15 residues), C-terminally derivatized with 4-aminonaphthalenesulfonic acid (ansa), have been analyzed on a hybrid magnetic sector-orthogonal acceleration time-of-flight tandem mass spectrometer, fitted with a nano-electrospray (nano-ES) interface. Deprotonated molecules generated by negative-ion ES were subjected to collision-induced dissociation (CID) using either methane or xenon as the collision gas, at a collision energy of 400 eV (laboratory frame of reference). As a consequence of charge localization on the sulfonate group, only C-terminal fragment ions were formed, presumably by charge-remote fragmentation mechanisms. Interpretable CID spectra were obtained from fmol amounts of the small peptides (up to 6 residues), whereas low pmol amounts were required for the larger peptides. CID spectra were also recorded of derivatized, previously noncharacterised peptides obtained by proteolysis of cytosolic hamster liver aldehyde dehydrogenase. Interpretation of these CID spectra was based on rules established for the fragmentation of the synthetic peptides. This study shows that derivatization with ansa may be useful in the de novo sequencing of peptides.  相似文献   

13.
Optimized procedures have been developed for the addition of sulfonic acid groups to the N-termini of low-level peptides. These procedures have been applied to peptides produced by tryptic digestion of proteins that have been separated by two-dimensional (2-D) gel electrophoresis. The derivatized peptides were sequenced using matrix-assisted laser desorption/ionization (MALDI) post-source decay (PSD) and electrospray ionization-tandem mass spectrometry methods. Reliable PSD sequencing results have been obtained starting with sub-picomole quantities of protein. We estimate that the current PSD sequencing limit is about 300 fmol of protein in the gel. The PSD mass spectra of the derivatized peptides usually allow much more specific protein sequence database searches than those obtained without derivatization. We also report initial automated electrospray ionization-tandem mass spectrometry sequencing of these novel peptide derivatives. Both types of tandem mass spectra provide predictable fragmentation patterns for arginine-terminated peptides. The spectra are easily interpreted de novo, and they facilitate error-tolerant identification of proteins whose sequences have been entered into databases.  相似文献   

14.
A sensitive method for the detection, quantitation and purification of peptides is described. The method is based on pre-column derivatization of peptides with phenyl isothiocyanate to form phenylthiocarbamoyl derivatives (PTC peptides). The derivatized peptides are analysed by reversed-phase high-performance liquid chromatography on a Zorbax ODS column (5 micron) and detected at 269 nm with a sensitivity limit of 1-5 pmol. The technique was utilized for the separation of a mixture of closely related synthetic peptides. The eluted PTC peptides were collected with an average recovery yield of 75% as determined by amino acid analysis. This method of separation of PTC peptides was also combined with the determination of the complete structure of recovered PTC-dynorphin A-(1-13) using the solid-phase sequenator (Sequemat). The advantages of the derivatization method are the rapidity and completeness of the reaction, the stability of the product, the sensitivity and specificity of the detection of derivatized peptides and the compatibility of the technique with subsequent analytical procedures. A particular application of this method was exemplified by the dosage of enkephalins secreted from perfused bovine adrenal glands.  相似文献   

15.
The development of selective derivatization for the determination of carboxylic acids, amino acids and peptides in aqueous solutions is described as a preliminary study for the determination of these compounds in biological materials. The derivatization reactions are completed before the liquid chromatographic separation and laser-induced fluorescence detection for which a continuous-wave argon-ion gas laser is used in the ultraviolet or visble mode. Carboxylic acid groups arre derivatized with 9-hydroxymethylathracene and primary amino groups are derivatized with fluorescein isothiocyanate. Detection limits, in aqueous solutions, for the carboxylic acid derivatives are ca. 190 fg (ultraviolet mode). In the visible mode, the detection limits are ca. 1 fg for the primary amino derivatives of amino acids and peptides. In al the chromatographic analyses, the derivatization mixtures are injected onto a standard reversed-phase or reversed- phase ion-pair system and conventional flow cells are used without expensive photon counting or optical systems.  相似文献   

16.
Derivatization of peptides as quaternary ammonium salts (QAS) is a promising method for sensitive detection by electrospray ionization tandem mass spectrometry (Cydzik et al. J. Pept. Sci. 2011, 17, 445453). The peptides derivatized by QAS at their N-termini undergo fragmentation according to the two competing mechanisms – charge remote (ChR) and charge directed (ChD). The absence of mobile proton in the quaternary salt ion results in ChR dissociation of a peptide bond. However, Hofmann elimination of quaternary salt creates an ion with one mobile proton leading to the ChD fragmentation. The experiments on the quaternary ammonium salts with deuterated N-alkyl groups or amide NH bonds revealed that QAS derivatized peptides dissociate according to the mixed ChR-ChD mechanism. The isotopic labeling allows differentiation of fragments formed according to ChR and ChD mechanisms.  相似文献   

17.
The development of a novel method for absolute quantification of the five most clinically relevant CYP450 isoenzymes is described based on chemical derivatization of cysteine residues. The sulfhydryl-reactive reagents, 2-bromo-4'-chloroacetophenone (p-CPB) and 2-bromo-4'-bromoacetophenone (p-BPB), are proposed for use in quantitative proteomics. After reducing and denaturing, the P450s are derivatized with p-CPB for sulfhydryl alkylation then subjected to trypsin digestion. The resulting p-CPB-attached peptides are enriched using a phenyl resin solid-phase cartridge, then separated on a Zorbax 300SB reversed-phase column, and detected under positive electrospray ionization in the multiple reaction monitoring mode. Quantification is achieved using p-BPB-modified peptides as internal standards. Validation results demonstrated that this method showed good linearity between the concentration range of 10 fmol/microg to 5 pmol/microg for the six selected peptides in a complex matrix (rat liver microsomal protein). Intra-day and inter-day precision, expressed by relative standard deviation, were all less than 18%. Assay accuracy was within +/- 20% in terms of relative error. The quantitative derivatization approach proved to be reproducible, cost-effective and readily suitable for high-throughput assays. The reliability of this method for quantification of intact P450s was demonstrated through comparing with the well-applied isotope-coded affinity tag (ICAT) method.  相似文献   

18.
Guanidination of the epsilon-amino group of lysine-terminated tryptic peptides can be accomplished selectively in one step with O-methylisourea hydrogen sulfate. This reaction converts lysine residues into more basic homoarginine residues. It also protects the epsilon-amino groups against unwanted reaction with sulfonation reagents, which can then be used to selectively modify the N-termini of tryptic peptides. The combined reactions convert lysine-terminated tryptic peptides into modified peptides that are suitable for de novo sequencing by postsource decay matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The guanidination reaction is very pH dependent. Product yields and reaction kinetics were studied in aqueous solution using either NaOH or diisopropylethylamine as the base. Methods are reported for derivatizing and sequencing lysine-terminated tryptic peptides at low pmole levels. The postsource decay (PSD) MALDI tandem mass spectra of a model peptide (VGGYGYGAK), the homoarginine analog and the sulfonated homoarginine analog are compared. These spectra show the influence that each chemical modification has on the peptide fragmentation pattern. Finally, we demonstrate that definitive protein identifications can be achieved by PSD MALDI sequencing of derivatized peptides obtained from solution digests of model proteins and from in-gel digests of 2D-gel separated proteins.  相似文献   

19.
We report the application of nanoelectrospray ionization tandem mass spectrometry (nES-MS/MS) and capillary LC/microelectrospray MS/MS (cLC/&mgr;ES-MS/MS) for sequencing sulfonic acid derivatized tryptic peptides. These derivatives were specifically prepared to facilitate low-energy charge-site-initiated fragmentation of C-terminal arginine-containing peptides, and to enhance the selective detection of a single series of y-type fragment ions. Both singly and doubly protonated peptides were analyzed by MS/MS and the results were compared with those from their derivatized counterparts. Model peptides and peptides from tryptic digests of gel-isolated proteins were analyzed. Derivatized singly protonated peptides fragment in the same way by nES-MS/MS as they do by post-source decay matrix-assisted laser desorption/ionization mass spectrometry (PSD-MALDI-MS). They produce fragment ion spectra dominated by y-ions, and the simplified spectra are readily interpreted de novo. Doubly protonated peptides fragment in much the same way as their non-derivatized doubly protonated counterparts. The fragmentation of doubly protonated derivatives is especially useful for sequencing peptides that possess a proline residue near the N-terminus of the molecule. The singly protonated forms of these proline-containing derivatives often show enhanced fragmentation on the N-terminal side of the proline and considerably reduced fragmentation on the C-terminal side. In addition, sulfonic acid derivatization increases the in-source fragmentation of arginine-containing peptides. This could be useful for sequence verification and sequence tagging for use in single stage mass spectrometry. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

20.
We have developed a novel method for enhancing the response of a peptide in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) by activating the C-terminal carboxyl group through an oxazolone with which is coupled an amine containing a functional group to help ionize the peptide. The reactions consist of dehydration with acetic anhydride to give an oxazolone, followed by aminolysis with an appropriate amino acid derivative such as arginine methyl ester. The MALDI signal of Ac-Tyr-Gly-Gly-Phe-Leu-Arg-OMe, thus converted from leucine-enkephalin, was detected while completely excluding the responses of arginine-deficient peptides coexisting in the reaction mixture. Some less intense peaks corresponding to a few sequential degradation products, also terminated with the arginine derivative, were also observed. The side-chain groups potentially that are reactive were conveniently protected by acetylation simultaneous with the C-terminal activation, and those that remained unprotected were reduced to virtually negligible proportions when the reaction was conducted in a peptide solution of concentration less than 1 mM. The greatly increased responses of such arginine-terminated peptides could possibly be exploited to discern the C-terminal tryptic peptide of a protein that is otherwise almost insensitive to MALDI-MS in general. The simplicity of the post-source decay spectrum of enkephalin derivatized by arginine methyl ester characteristically accentuated z- and b-type ions, and this should facilitate sequencing of such derivatized peptides. Remaining problems with practical applications of this approach are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号