首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用原子力显微镜和X射线衍射等手段研究了H型(PS)2PEG(PS)2嵌段共聚物在不同溶剂和不同浓度的溶液中旋涂所得薄膜的形貌, 并与聚乙二醇(PEG)均聚物进行了比较. 虽然(PS)2PEG(PS)2中PS的链长很短, 但对形貌有很大影响, PS链段的存在改变了聚合物在基底上的稳定性, 使用四氢呋喃为溶剂, 当溶液浓度较小时, 在旋涂过程中发生去润湿, 然后再发生结晶, 膜厚较大时去润湿被抑止, 所得形貌与PEG均聚物类似. 以甲苯为溶剂时, 由于PEG和PS与溶剂的相互作用不同, 共聚物在溶液中形成胶束, 从而改变了聚合物的结晶形貌.  相似文献   

2.
3.
We have been able to prepare a molecular complex between the poly(ethylene oxide) block of a poly(ethylene)-b-poly(ethylene-alt-propylene)-b-poly(ethylene oxide) triblock copolymer and p-nitrophenol (PNP). The composition of the copolymer employed was: 24% PE, 57% PEP and 19% PEO in weight percent. The pure copolymer exhibited a non-conventional thermal behavior since the PEO block displayed a fractionated crystallization process during cooling. The PEO block/PNP complex did not show any apparent crystallization during cooling, instead cold crystallization during heating was observed and an approximately 30°C increase in melting point as compared to the neat PEO block within the copolymer. This caused an overlap in the melting regions of the PE block and the PEO block/PNP complex. The self-nucleation of the PE-b-PEP-b-PEO/PNP complex is very different from that of the neat triblock copolymer. An increased capacity for self-nucleation of the PEO block was produced by the complexation with PNP and therefore the three self-nucleation domains were clearly encountered for both the PE block and for the PEO block/PNP complex. Self-nucleation was able to show that the two crystallizable blocks can be self-nucleated and annealed in an independent way, thereby ascertaining the presence of separate crystalline regions in the triblock copolymer. Through the use of PNP, both the crystallinity and the melting point of the PE-b-PEP-b-PEO block copolymer employed here can be substantially increased. Similar results were obtained by complexation of the same ABC triblock copolymer with resorcinol.  相似文献   

4.
通过变温广角X射线衍射(WAXD)、 差示扫描量热法(DSC)和偏光显微镜(POM)研究了聚左旋乳酸-聚乙二醇(PLLA-PEG)二嵌段共聚物的非等温结晶行为, 并用Ozawa方程分析了PLLA-PEG的非等温结晶动力学. 实验结果表明, 高熔点的硬段PLLA结晶符合Ozawa理论, 而低熔点的软段PEG对PLLA的结晶起到了稀释剂的作用; 当软段PEG开始结晶时, 已经结晶完全的硬段PLLA限制了PEG的结晶, 使得软段PEG的结晶不符合Ozawa理论. 此外, 不同降温速率下的结晶形貌研究结果表明, 随着降温速率的增加, 晶体经历了从环带球晶、 环带和十字消光的混合球晶到典型的十字消光球晶的转变, 并且球晶的尺寸也明显变小.  相似文献   

5.
The morphology, crystallization and self nucleation behavior of double crystalline diblock copolymers of poly(p-dioxanone) (PPDX) and poly(ϵ-caprolactone) (PCL) with different compositions have been studied by different techniques, including optical microscopy (OM), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The two blocks crystallize in a single coincident exotherm when cooled from the melt. The self-nucleation technique is able to separate into two exotherms the crystallization of each block. We have gathered evidences indicating that the PPDX block can nucleate the PCL block within the copolymers regardless of the composition. This effect is responsible for the lack of homogeneous nucleation or fractionated crystallization of the PCL block even when it constitutes a minor phase within the copolymer (25% or less). Nevertheless, we were able to show that decreasing amounts of PCL within the diblock copolymer still produces confinement effects that retard the crystallization kinetics of the PCL component and decrease the Avrami index. On the other hand evidence for confinement was also obtained for the PPDX block, since as its content is reduced within the copolymer, a depression in its self-nucleation and annealing temperatures were observed.  相似文献   

6.
周东山 《高分子科学》2017,35(8):1009-1019
Differential fast scanning calorimetry (DFSC) was employed on the study of self-nucleation behavior of poly(butylene succinate) (PBS).The ultra-fast cooling ability of DFSC allows investigating the effect of self-nucleation on the isothermal crystallization kinetics over a wide temperature range.Crystallization half-time,instead of crystallization peak temperature,was used to describe the self-nucleation behavior,and the self-nucleation domain for the samples crystallized at different temperatures was determined.Due to the competition between homogenous nucleation and self-nuclei,the effect of self-nucleation was less pronounced at high supercooling than that for the sample isothermally crystallized at higher temperature.An efficiency scale to judge the efficiency of nucleating agents from the crystallization half-time was also introduced in this work.  相似文献   

7.
An oxyethylene/oxybutylene block copolymer with asymmetric volume fraction (E115B103) was blended with oxybutylene homopolymer (Bh) at different volume fractions of the block (φE). Crystallization behavior of the blends was studied and was compared with that of the blends from a symmetric block copolymer (E114B56). It was found that the crystallization temperature of E115B103/B28 blend is lower than that of the blends from symmetric block copolymer. For the blend with φE= 0.30 breakout crystallization with an Avrami exponent n ≈ 3.0 is observed. At φE = 0.22 the blend exhibits a variable crystallization behavior: confined crystallization with n ≈ 1.0 at lower crystallization temperatures but breakout crystallization at high crystallization temperatures. For the blend with φE = 0.14 and sphere morphology confined crystallization occurs at all crystallization temperatures studied. When compared with the blends from symmetric block copolymer, confined crystallization occurs more easily in the E115B103/B28 blends. The SAXS results agree with the isothermal crystallization kinetics. Deformation of the confined crystalline block is observed in the blend with φE = 0.14 and mixed lamellar and cylinder morphologies in the blend with φE = 0.22.  相似文献   

8.
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L ‐lactide)–poly(ethylene glycol) (PLLA–PEG) diblock copolymers were investigated with wide‐angle X‐ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L ‐lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000–PEG5000 at a larger degree of supercooling was different from that of PLLA2500–PEG5000, PLLA5000–PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively. The PLLA block bonded chemically with the PEG block and increased the crystallization activation energy, but it provided nucleating sites for the crystallization of the PEG block, and the crystallization rate rose when it was heterogeneous nucleation. The number of melting peaks was three and one for the PEG homopolymer and the PEG block of the diblock copolymers, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3215–3226, 2006  相似文献   

9.
用1H NMR, SEC, XRD和DSC对聚乳酸(PLLA)-聚乙二醇(PEG)二嵌段共聚物进行了表征. 由于共聚物中两种组分比例的不同, 表现出某组分单独结晶或两种组分共同结晶. 用DSC和POM方法, 对两组分含量相当的共聚物进行了熔体结晶行为研究, 并采用Avrami方程进行了结晶动力学计算. 用Lauritzen-Hoffmann理论对PLLA-PEG结晶机理进行了分析. 在70~94 ℃范围内, 得到成核参数Kg(POM)=5.23×105 K2. 共聚物的Kg和链折叠自由能σe都比均聚物的文献报道值高, 表明PEG链段的存在影响了PLLA的结晶, 使得其成核较均聚物困难.  相似文献   

10.
以氨丙基硅氧烷偶联剂和端羟基聚二甲基硅氧烷(PDMS)为原料,合成了端氨丙基聚二甲基硅氧烷低聚物(SN2),并将其作为扩链剂,制备了有机硅-聚氨酯(Si-PU)嵌段共聚物.考察了聚氨酯预聚体的加料比(rNCO/OH)、SN2与聚氨酯预聚体的加料比(rNH2/NCO)对Si-PU嵌段共聚物溶液流变行为及其膜性能的影响.研究发现,该Si-PU共聚物的异丙醇溶液呈现较低的表观黏度及牛顿特性;成膜时,有机硅链段向表面迁移;膜表面对水的接触角达110°以上,且随着有机硅链段含量的增高而增大;共聚物膜的24 h吸水率较低(<1.5 wt%);但当有机硅链段含量过高时,吸水率反而增高.  相似文献   

11.
For the controlled modification of sol-gel-templated polymer nanocomposites, which are transferred to a nanostructured, crystalline TiO2 phase by a calcination process, the addition of a single homopolymer was investigated. For the preparation, the homopolymer polystyrene (PS) is added in different amounts to the diblock copolymer P(S-b-EO) acting as a templating agent. The homopolymer/diblock copolymer blend system is combined with sol-gel chemistry to provide and attach the TiO2 nanoparticles to the diblock copolymer. So-called good-poor solvent-pair-induced phase separation leads to the formation of nanostructures by film preparation via spin coating. The fabricated morphologies are studied as a function of added homopolymer before and after calcination with atomic force microscopy, field emission scanning electron microscopy, and grazing incidence small-angle X-ray scattering. The observed behavior is discussed in the framework of controlling the block copolymer morphologies by the addition of homopolymers. At small homopolymer concentrations, the increase in homopolymer concentration changes the structure size, whereas at high homopolymer concentrations, a change in morphology is triggered. Thus, the behavior of a pure polymer system is transferred to a more complex hybrid system.  相似文献   

12.
We have recently prepared a series of Polystyrene-b-Poly(ethylene oxide)-b-Polycaprolactone (PS-b-PEO-b-PCL or SEOCL) triblock copolymers of varying compositions and molecular weights. These ABC triblock copolymers present the peculiarity that two of the three blocks are able to crystallize upon cooling from an already phase segregated melt. When either of the crystallizable blocks or both are a minor phase, a fractionated crystallization process develops. The confinement of crystallizable blocks in the nanoscopic scale enables the clear observation in some cases of exclusive crystallization from homogeneous nuclei of two components within the triblock copolymer. The homogeneous nature of the nucleation was deduced since the supercooling attained is the maximum possible before vitrification of the material takes place. The self-nucleation domains were also found to depend on the composition and molecular weight of the copolymers. The block copolymers exhibited a marked decrease in crystalline memory and when the crystallizable blocks constitute minor phases, the self-nucleation domain disappears. The reason behind this behavior is that only at lower self-nucleation temperatures the density of self-nuclei becomes high enough to include at least one crystal fragment per confined microdomain in view of their vast numbers (e.g., 1016/cm3).  相似文献   

13.
An heterofunctional initiator combining two reactive sites for ring opening polymerization and two for atom transfer radical polymerization was used to prepare three A2B2 miktoarm star copolymers of poly(ε‐caprolactone) (PCL) and polystyrene (PS). The morphology and thermal properties were studied by transmission electron microscopy, polarized light optical microscopy, and differential scanning calorimetry. The (PCL)2(PS)2 72/28 (72 wt % PCL) sample was crystallized from a disordered melt. In this case, crystallization drove the structure formation and a lamellar morphology was obtained at the microdomain level, while spherulites were observed at a superstructural level. The other two samples, 39/61 and 27/73, with lower PCL content and higher total molecular weight, were not able to form spherulites. Surprisingly, these miktoarm star copolymers exhibited hexagonally packed cylinders and spheres morphologies, respectively, instead of lamellar and cylindrical morphology. Such unexpected and novel behavior was explained in terms of the higher resistance of the arms to be stretched in a miktoarm star copolymer when compared with the corresponding linear diblocks. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5387–5397, 2007  相似文献   

14.
用辛酸亚锡[Sn(Oct)2]作催化剂,进行了端羟基聚乙二醇(PEG)和1,4 二氧六环酮(DON)的共聚反应,得到嵌段共聚物PDON b PEG b PDON.根据1H NMR谱图计算结果表明共聚物组成随两组分投料比而改变.共聚物的DSC结果表明嵌段共聚物中PDON的熔点和结晶度的变化相对较小,而PEG的熔点及结晶度均有较大降低.将PEG引入可大大提高材料的吸水率.  相似文献   

15.
We used two-dimensional column chromatography to analyze the composition of a sample of presumably a diblock copolymer of poly(ethylene glycol) (PEG) and poly(L-lactide) synthesized from monomethoxy-terminated PEG. The first dimension of the separation is phase fluctuation chromatography to prepare fractions that contain various components of the copolymer in different ratios. The second dimension is size-exclusion chromatography, NMR, and HPLC at the critical condition of PEG. The PEG initiator has small amounts of diol-terminated dimeric components. We found that the copolymer sample contains a triblock copolymer and low-molecular-mass components in addition to the main part of the diblock copolymer. The SEC chromatograms show that the main part consists of two components with distinct peak lengths for the PLLA block. The low-molecular-mass components have a broad distribution in chemical composition. Phase fluctuation chromatography enriched the triblock copolymer and the diblock copolymer with the longer PLLA block in early fractions when the column was packed with carboxymethyl-modified porous silica. When the porous medium was PLLA-grafted silica, size exclusion dominated, but the low-molecular-mass components were separated according to their chemical composition.  相似文献   

16.
合成了不同用量、不同分子量的聚乙二醇醚(PEG)或聚丁二醇醚(PTMC)与聚对苯二甲酸乙二醇酯(PET)/蒙脱土(MMT)的嵌段共聚物。研究了MMT在共聚物中的分散状态及PEG或PTMG对PET/MMT插层聚合物结晶性能的影响。结果表明,MMT在共聚物中以纳米尺寸分散;加入PEG或PTMG增强了聚酯链段的柔顺性,使共聚物熔体降温过程的结晶温度提高,冷结晶温度降低,即插层嵌段共聚物的结晶速率提高;在合成的共聚物中,分子量为2000,用量为DMT的6%的PEG对插层共聚物结晶速率的促进作用最大  相似文献   

17.
Nonisothermal crystallization and melting behaviors of poly(p-dioxanone)(PPDO)-b-poly(ethylene glycol)(PEG) with mole ratios of 80:20 and 30:70, has been studied by differential scanning calorimeter using various cooling rates. Crystallization behavior of each crystallizable segments of the copolymer was compared with the corresponding segment of homopolymer. For a given composition, the crystallization process began at higher temperature when the slower scanning rates were used. The kinetics of the PPDO segments and the PEG segments in the copolymers under nonisothermal crystallization conditions were analyzed by Ozawa equation and also the crystallization results of the copolymer segments were compared with the corresponding homopolymers. The results showed that the Ozawa equation fails to describe the whole crystallization process of the copolymer segments along with PPDO homopolymer, but describes the crystallization behavior of the PEG homopolymer. Crystallization activation energy and absolute crystallinity values were estimated from the cooling scans (using Kissinger’s method) and fusion endotherms of the subsequent heating scans, respectively.  相似文献   

18.
Amphiphilic diblock copolymers composed of poly(ethylene glycol) (PEG) and poly(l-leucine) (PLeu) with mannose at the chain end of PEG were synthesized by a combination of ring-opening polymerization (ROP) and click chemistry. First, an α-azido, ω-amino PEG (N(3)-PEG-NH(2)) was synthesized and converted to the corresponding amine hydrochloride (N(3)-PEG-NH(2)·HCl), which was used as a macroinitiator to initiate the ROP of L-leucine-N-carboxyanhydride (Leu-NCA), yielding three amphiphilic block copolymers with different chain lengths of PLeu (N(3)-PEG-b-PLeu). Then, click chemistry of the alkynyl mannose with N(3)-PEG-b-PLeu anchored a mannose moiety to the PEG chain end of the copolymer. The self-assembly behavior of these copolymers in water was investigated using transmission electron microscopy (TEM), laser light scattering (LLS) and circular dichroism (CD). Depending on the copolymer composition and the initial concentration of the copolymer in organic solvent, different morphologies (e.g. spherical micelle, wormlike micelle) were observed. The aggregation behavior was demonstrated to be controlled by secondary structure formation and the hydrophobic interactions of the PLeu segments. With mannose moieties on the surface of the aggregates, these aggregates could bind reversibly the lectin Concanavalin A (Con A).  相似文献   

19.
聚乙二醇改性聚乳酸的研究   总被引:15,自引:0,他引:15  
将丙交酯(DL LA)与聚乙二醇(PEG)共聚得到了一系列高分子量的共聚物.用IR、1H NMR和DMA对它的结构和粘弹性进行了表征,并测定了其力学性能,同时对材料在加工过程中特征粘度的变化也进行了研究.结果表明,PEG与LA的共聚物是一种三嵌段结构HO PLA PEG PLA OH.当PEG含量增加时,强度下降,伸长率增加,共聚物逐渐由脆性向韧性转变,因此用PEG改性的PLA是一种综合性能可调控的生物降解材料  相似文献   

20.
Symmetric polystyrene (PS)–poly(dimethylsiloxane) (PDMS) diblock copolymers were mixed into a 20% dispersion of PDMS in PS. The effect of adding the block copolymer on the blend morphology was examined as a function of the block copolymer molecular weight (Mn,bcp), concentration, and viscosity ratio (ηr). When blended together with the PS and PDMS homopolymers, most of the block copolymer appeared as micelles in the PS matrix. Even when the copolymer was preblended into the PDMS dispersed phase, block copolymer micelles in the PS matrix phase were observed with transmission electron microscopy after mixing. Adding 16 kg/mol PS–PDMS block copolymer dramatically reduced the PDMS particle size, but the morphology, as examined by scanning electron microscopy, was unstable upon thermal annealing. Adding 156 kg/mol block copolymer yielded particle sizes similar to those of blends with 40 or 83 kg/mol block copolymers, but only blends with 83 kg/mol block copolymer were stable after annealing. For a given value of Mn,bcp, a minimum PDMS particle size was observed when ηr ~ 1. When ηr = 2.6, thermally stable, submicrometer particles as small as 0.6 μm were observed after the addition of only 3% PS–PDMS diblock (number‐average molecular weight = 83 kg/mol) to the blend. As little as 1% 83 kg/mol block copolymer was sufficient to stabilize a 20% dispersion of 1.1‐μm PDMS particles in PS. Droplet size reduction was attributed to the prevention of coalescence caused by small amounts of block copolymer at the interface. The conditions under which block copolymer interfacial adsorption and interpenetration were facilitated were explained with Leibler's brush theory. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 346–357, 2002; DOI 10.1002/polb.10098  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号