首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The collapse of Langmuir monolayers of poly(vinyl stearate) (PVS) at the air-water interface has been investigated by combined measurements of the surface pressure-area isotherms and Brewster angle microscopy (BAM). Atomic force microscopy (AFM) has been used to gain out-of-plane structural information on collapsed films transferred onto a solid substrate by a modified version of the inverse Langmuir-Schaefer deposition method. At high areas per monomer repeat unit, BAM imaging revealed that the films are heterogeneous, with large solidlike domains (25-200 mum in diameter) coexisting with liquidlike domains. Upon film compression, the domains coalesced to form a homogeneous monolayer before the film collapsed at constant pressure, forming irreversible three-dimensional (3D) structures. BAM images showed that two 3D structures coexisted: buckles of varying width extending across the surface and perpendicular to the direction of the compression and dotted islandlike structures. Upon expansion, the film fractured and both 3D protrusions persisted, explaining the marked hysteresis recorded in the Langmuir isotherms. Experiments with AFM confirmed the 3D nature of both protrusions and revealed that many buckles contain substructures corresponding to narrow buckles whose heights are a multiple of a single bilayer. Additionally, many multilayer islands with diameters spanning from 0.2 mum to over 3.5 mum were characterized by varying heights between 2 nm and up to over 50 nm. The key to the formation of the irreversible 3D structures is the presence of large inhomogeneities in the PVS monolayer, and a generalized phenomenological model is proposed to explain the collapse observed.  相似文献   

2.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

3.
Dipalmitoyl phosphatidic acid (DPPA) monolayers at the air-water interface were studied from surface pressure (Pi)-area (A) isotherms and at the microscopic level with Brewster angle microscopy (BAM) under different conditions of temperature, pH, and ionic strength. BAM images were recorded simultaneously with Pi-A isotherms during the monolayer compression-expansion cycles. DPPA monolayers show a structural polymorphism from the liquid-expanded (LE)-liquid-condensed (LC) transition region at lower surface pressures toward liquid-condensed and solid (S) structures at higher surface pressures. An increase in temperature, pH, or ionic strength provokes an expansion in the monolayer structure. The results obtained from the Pi-A measurements are confirmed by the monolayer topography and relative reflectivity. The measurements of relative reflectivity upon monolayer compression showed an increase in relative monolayer thickness of 1.25 and 3.3 times throughout the full monolayer compression from the liquid-expanded to the liquid-condensed and solid states, respectively.  相似文献   

4.
In this work, organized mixed monolayers containing a cationic water-insoluble iridium(III) complex, Ir-dye, [Ir(ppy)(2)(tmphen)]PF(6), (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline, and ppy = 2-phenylpyridine), and an anionic lipid matrix, DMPA, dimyristoyl-phosphatidic acid, with different molar proportions, were formed by the co-spreading method at the air-water interface. The presence of the dye at the interface, as well as the molecular organization of the mixed films, is deduced from surface techniques such as pi-A isotherms, Brewster angle microscopy (BAM) and reflection spectroscopy. The results obtained remark the formation of an equimolar mixed film, Ir-dye/DMPA = 1:1. BAM images reveal a whole homogeneous monolayer, with gradually increasing reflectivity along the compression process up to reaching the collapse of this equimolecular monolayer at pi approximately equal to 37 mNm(-1). Increasing the molar ratio of DMPA in the mixture, the excess of lipid molecules organizes themselves forming dark flower-like domains of pure DMPA at high surface pressures, coexisting with the mixed Ir-dye/DMPA = 1:1 monolayer. On the other hand, unstable mixed monolayers are obtained by using an initial dye surface concentration higher than the equimolecular one. These mixed Langmuir monolayers have been successfully transferred onto solid substrates by the LB (Langmuir-Blodgett) technique.  相似文献   

5.
Mixed phospholipid monolayers hosting a poly(ethylene glycol) (PEG)-grafted distearoylphosphatidylethanolamine with a PEG molecular weight of 5000 (DSPE-PEG5000) spread at the air/water interface were used as model systems to study the effect of PEG-phospholipids on the lateral structure of PEG-grafted membrane-mimetic surfaces. DSPE-PEG5000 has been found to mix readily with distearoylphosphoethanolamine-succinyl (DSPE-succynil), a phospholipid whose structure resembles closely that of the phospholipid part of the DSPE-PEG5000 molecule. However, properties of mixed monolayers such as morphology and stability varied significantly with DSPE-PEG5000 content. In particular, our surface pressure, epifluorescence microscopy (EFM), and Brewster angle microscopy (BAM) studies have shown that mixtures containing 1-9 mol % of DSPE-PEG5000 form stable condensed monolayers with no sign of microscopic phase separation at surface pressures above approximately 25 mN/m. Yet, at 1 mol % of DSPE-PEG5000 in mixed monolayers, the two components have been found to behave nearly immiscibly at surface pressures below approximately 25 mN/m. For monolayers containing 18-75 mol % of DSPE-PEG5000, a high-pressure transition has been observed in the low-compressibility region of their isotherms, which has been identified on the basis of continuous BAM imaging of monolayer morphology, as reminiscent of the collapse nucleation in a pure DSPE-PEG5000 monolayer. Thus, the comparative analysis of our surface pressure, EFM, and BAM data has revealed that there exists a rather narrow range of mixture compositions with DSPE-PEG5000 content between 3 and 9 mol %, where somewhat homogeneous distribution of DSPE-PEG5000 molecules and high pressure stability can be achieved. This finding can be useful to "navigating" through possible mixture compositions while developing guidelines to the rational design of membrane-mimetic surfaces with highly controlled bio-nonfouling properties.  相似文献   

6.
Unlike surfactants considered in previous studies, when phosphatidylcholine (PC) monolayers collapse at constant surface tension to form a 3D bulk phase, surface area decreases at rates that slow. The different kinetics could result from collapse by a distinct mechanism. Rather than the transfer of molecules all along the interface between the monolayer and bulk phase, PC films can collapse by the folding and subsequent sliding of a bilayer over the monolayer. By this mechanism, molecules can transfer to collapsed trilayers through a locus of constant size. In this article, we use the theory of nucleation and growth to show analytically that during collapse, the area can decrease at rates that decelerate when each individual structure grows through a region of fixed dimensions. We also show that binary films of 30% dihydrocholesterol (dchol) and dipalmitoyl phosphatidylcholine (DPPC), which have previously been shown to form a homogeneous monolayer from which trilayer disks grow through a point, collapse with rates of area decay that slow, in agreement with our analytical expressions.  相似文献   

7.
Surface pressure-induced crystallization of poly(epsilon-caprolactone) (PCL) from a metastable region of the surface pressure-area per monomer (Pi-A) isotherm in Langmuir monolayers at the air/water (A/W) interface has been captured in real time by Brewster angle microscopy (BAM). Morphological features of PCL crystals grown in Langmuir films during the compression process exhibit four fully developed faces and two distorted faces. During expansion of the crystallized film, polymer chains slowly detach from the crystalline domains and diffuse back into the monolayer as the crystals "melt". Typical diffusion-controlled morphologies are revealed by BAM during the melting process as the secondary dendrites melt away faster, that is, at a higher surface pressure than the principal axes. Electron diffraction on Langmuir-Schaefer films suggests that the lamellar crystals are oriented with the polymer chain axes perpendicular to the substrate surface, while atomic force microscopy reveals a crystal thickness of approximately 7.6 nm.  相似文献   

8.
Poly(epsilon-caprolactone) (PCL) samples with number average molar masses (Mn) ranging from 3.5 to 36 kg.mol-1 exhibit molar mass dependent nucleation and growth of crystals, crystal morphologies, and melting properties at a temperature of 22.5 degrees C in Langmuir films at the air/water (A/W) interface. At surface area per monomer, A, greater than approximately 0.37 nm2.monomer-1, surface pressure, Pi, and surface elasticity exhibit molar mass independent behavior that is consistent with a semidilute PCL monolayer. In this regime, the scaling exponent indicates that the A/W interface is a good solvent for the liquid-expanded PCL monolayers. Pi-A isotherms show molar mass dependent behavior in the vicinity of the collapse transition, i.e., the supersaturated monolayer state, corresponding to the onset of the nucleation of crystals. Molar mass dependent morphological features for PCL crystals and their subsequent crystal melting are studied by in situ Brewster angle microscopy during hysteresis experiments. The competition between lower segmental mobility and a greater degree of undercooling with increasing molar mass produces a maximum average growth rate at intermediate molar mass. This behavior is analogous to spherulitic growth in bulk PCL melts. The plateau regions in the expansion isotherms represent the melting process, where the polymer chains continuously return to the monolayer state. The magnitude of Pi for the plateau during expansion decreases with increasing molar mass, indicating that the melting process is strongly molar mass dependent.  相似文献   

9.
《Liquid crystals》2001,28(3):437-444
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

10.
Over decades, information about the rheological properties of the condensed monolayer phases has been obtained by introduction of a two-dimensional compressibility which is defined on the basis of the surface pressure-molecular area (Pi-A) features of the monolayer. Since the last decade, fundamental progress was attained in the experimental determination of the main characteristics of Langmuir monolayers in microscopic and molecular scale. Already smallest changes in the molecular structure of the amphiphile can result in changes in the molecular arrangement in the monolayer and thus, in changes of the main characteristics of the monolayer such as, the surface pressure-area per molecule (Pi-A) isotherms, the shape and texture of the condensed phase domains and the two-dimensional lattice structure. As the classical equations of state allowed only characterisation of the fluid (gaseous, liquid-expanded) state, thermodynamically based equations of state, which consider also the aggregation of the monolayer material to the condensed phase, have been developed. The present review focuses particularly to amphiphilic monolayers, the Pi-A isotherms of which indicate the existence of two condensed phases. For this case, the experimental results of the differences in the structure features and phase properties are discussed. The generalisation of the equation of state for Langmuir monolayers developed for the case that one, two or more phase transitions in the monolayer take place, is in agreement with the experimental results that the two-dimensional compressibility of the condensed phases undergoes a jump at the phase transition, whereas the compressibility is proportional to the surface pressure within one of the condensed phases. An example is presented which explains the procedure of the theoretical analysis of Pi-A isotherms indicating the existence of two condensed phases. An element of the procedure is the application of the general principle that the behaviour of any thermodynamic system is determined by the stability condition. An interesting anisotropy of the compressibility is revealed by GIXD studies of the S-phase of octadecanol monolayers. However, similar studies performed close to the LS-S-phase transition would result in a thermodynamically impossible negative compressibility. Close to this phase transition, the compressibility cannot be determined from the positions of the maxima because the monolayer is in a disordered state attributed to elastic distortions by fluctuations with the structure of the new phase in the surrounding matrix without destroying the quasi-long-range positional order.  相似文献   

11.
Langmuir monolayers have been extensively investigated by various experimental techniques. These studies allowed an in-depth understanding of the molecular conformation in the layer, phase transitions, and the structure of the multilayer. As the monolayer is compressed and the surface pressure is increased beyond a critical value, usually occurring in the minimal closely packed molecular area, the monolayer fractures and/or folds, forming multilayers in a process referred to as collapse. Various mechanisms for monolayer collapse and the resulting reorganization of the film have been proposed, and only a few studies have demonstrated the formation of a bilayer after collapse and with the use of a Ca(2+) solution. In this work, Langmuir isotherms coupled with imaging ellipsometry and polarization modulation infrared reflection absorption spectroscopy were recorded to investigate the air-water interface properties of Langmuir films of anionic nucleolipids. We report for these new molecules the formation of a quasi-hexagonal packing of bilayer domains at a low compression rate, a singular behavior for lipids at the air-water interface that has not yet been documented.  相似文献   

12.
Mixtures of a polyhedral oligomeric silsesquioxane, trisilanolisobutyl-POSS, and a polar silicone, poly(dimethyl-co-methylvinyl-co-methyl, 2-diphenyl phosphine oxide ethyl) siloxane (PDMS-PO), spread as Langmuir monolayers at the air/water interface are used to examine the surface phase behavior and aggregation of trisilanolisobutyl-POSS as a function of silicone composition. Analyses of the surface pressure-area per monomer (Pi-A) isotherms in terms of the collapse pressures and excess Gibbs free energies of mixing indicate the monolayers form slightly negative deviation mixtures. Direct observations of surface morphology with Brewster angle microscopy in the collapsed regime reveal that the governing factor for aggregation is the collapse Pi of the component with a stronger affinity for water. In trisilanolisobutyl-POSS/PDMS-PO blends, POSS aggregates as discrete domains and does not coalesce into larger aggregates or networklike structures for <80 wt % POSS, a feature that is vastly different from a previous study of POSS blended with regular poly(dimethylsiloxane).  相似文献   

13.
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

14.
The synthesis of a poly(azo)urethane by fixing CO(2) in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed "clean method" and the polymers obtained are named "NIPUs" (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per mer unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.  相似文献   

15.
Alamethicin (ALM), a 20-amino acid antibiotic peptide (peptaibol) from fungal sources, was mixed in Langmuir monolayers with six different surfactants: semifluorinated (F6H18, F10H19, F8H10OH, F6H10SH) and hydrogenated (C18SH and DODAC), aimed at finding appropriate molecules for ALM incorporation for nanodevice construction. Alamethicin-containing mixed monolayers were investigated by means of surface manometry (pi-A isotherms) and Brewster angle microscopy (BAM). Our results show that only semifluorinated alkanes can serve as an appropriate material since they form miscible and homogeneous monolayers with ALM within the whole concentration range. All the remaining surfactants, possessing polar groups, were found to demix with ALM. This effect was explained as being due to the existence of strong polar interactions between vertically oriented surfactant molecules, which tend to separate from horizontally oriented alpha-helices of the peptide. On the contrary, semifluorinated alkanes, lacking any polar group in their structure and bearing a large dipole moment, interact with ALM, also possessing a huge cumulative dipole moment. These dipole-dipole interactions between ALM and SFAs are more attractive than those between SFA molecules in their pure monolayers, causing the large ALM molecule, situated parallel to the interface, to be surrounded by SFA molecules in perpendicular orientation, leading to the formation of a highly organized binary mixed monolayer. BAM images of the ALM monolayer indicate that this peptide collapses with the nucleation and growth mechanism, like the majority of surfactants, which contradicts the model of ALM collapse by desorption, previously published in the literature.  相似文献   

16.
The structure of the Langmuir film of an amphiphilic spiropyran, 1',3'-dihydro-3',3'-dimethyl-6-nitro-l'-octadecyl-8-(docosanoyloxyme thyl)spiro[2H-1-benzopyran-2,2'-(2H)-indole] (SP), is investigated using Brewster angle microscopy (BAM). The BAM observations show that the Langmuir film of SP can be roughly categorized into three regimes: a low-temperature regime at 7-13 degrees C; a medium-temperature regime at 23-30 degrees C; a high-temperature regime at 40 degrees C. The low-temperature regime is characterized both by the domains that are formed just after the spreading and by the onset of the surface pressure when the domains are merged together to form continuous trilayers. In the medium-temperature regime, a continuous monolayer film is formed after the solvent evaporation, followed by the growth of "embryos" with compression. Around the phase transition point, the "embryos" serve as the "nucleation sites" of the circular trilayer domains. The characteristic features of the high-temperature regime are similar to the ones of the medium-temperature regime except for the absence of a steep rise in surface pressure after the plateau region and the absence of the circular trilayer domains. UV illumination of the Langmuir films leads to the isomerization of SP into merocyanine (MC). However, J-aggregates of MC are formed only when the circular trilayer domains are present. On the basis of the above results, we present a phase diagram of the Langmuir film of SP. The structure and photoreaction depend strongly on the phase of the Langmuir film, indicating that the area/molecule is not the only decisive parameter.  相似文献   

17.
The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.  相似文献   

18.
A trisilanol derivative of polyhedral oligomeric silsesquioxane (POSS), trisilanolisobutyl-POSS, has recently been reported to form stable monolayers at the air/water interface. This paper explores the mono- and multilayer properties of another POSS derivative, trisilanolcyclohexyl-POSS, with pi-A isotherm and Brewster angle microscopy measurements. Results show that with continuously increasing surface concentration via symmetrical compression, trisilanolcyclohexyl-POSS amphiphiles at the air/water interface undergo a series of phase transitions from traditional Langmuir monolayers (one-POSS-molecule thick) to unique rodlike hydrophobic aggregates in multilayer films (approximately eight-POSS-molecules thick) that are dramatically different from "collapsed" morphologies seen in other systems. Stable and hydrophobic rodlike structure formation on water is presumably due to trisilanolcyclohexyl-POSS' unique molecular structure and strong tendency to form intermolecular hydrogen bonds in the solid state. This result is consistent with existing POSS/polymer composite research, which shows that POSS molecules tend to aggregate and crystallize into lamellar nanocrystals.  相似文献   

19.
Effects of the subphase temperature on the surface pressure (pi)-area (A) isotherms of mixed monolayers of miltefosine (hexadecylphosphocholine), a potential anticancer drug, and cholesterol were investigated at the air/water interface, which were supplemented with Brewster angle microscopy (BAM) observations. Comparison of the collapse pressure values, mean molecular areas, excess areas and excess free energy of mixing between the mixed monolayer at various molar ratios and the pure component monolayers showed that, regardless of the subphase temperature, the investigated miltefosine-cholesterol system is much more stable than that the pure component monolayers, suggesting strong attractive interactions between miltefosine and cholesterol in mixed monolayers. As a consequence, it was postulated that stable "complexes" of the two components could form at the interface, for which stoichiometry may vary with the subphase temperature. Such "surface complexes" should be responsible for the contraction of the mean molecular area and thus the high stability of the mixed monolayer.  相似文献   

20.
The 2D complex formed at the air-water interface between the dialkyl chain cationic surfactant, dihexadecyldimethylammonium bromide, and the anionic porphyrin, tetrakis-(4-sulfonatophenyl) porphine, was studied using surface pressure-area isotherms as well as X-ray and neutron reflection measurements. The surface structure of these films was determined by the use of simultaneously constrained analysis of the neutron and X-ray reflectometry data and BAM images. Isotopic contrast variation methods were employed to enhance the information content of the neutron reflection data. The rigid complex forms at the interface due to the electrostatic interaction between the cationic headgroups of the surfactant and the anionic functional groups at the meso position of the porphyrin. The surface pressure-area isotherms show three distinct regions on compression: an initial condensed phase that ends with a pressure peak at 36 mN m-1, a second plateau region of high compressibility, and a final condensed phase. BAM images show that at the beginning of the plateau region in the isotherm there is complete surface coverage by a monolayer. The constrained simultaneous fitting of neutron and X-ray data measured just prior to and after the pressure peak shows a structurally similar 2D complex at the interface. Modeling of X-ray reflectometry data also reveals that in the final high-pressure phase the film has folded to form a trilayer. The conclusion is that the plateau region of the isotherm is due to the formation of trilayer surface coverage through localized buckling or folding, and that after this is complete there is some condensation before final film collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号