首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform-sized fluorescent molecularly imprinted polymers were prepared by one-step swelling and suspension polymerization, while chlorpyrifos, methacrylic acid, ethylene glycol dimethacrylate, and oil-soluble CdSe/ZnS quantum dots were used as the carrier, template molecule, functional monomer, cross-linker, and fluorophor, respectively. The morphology, adsorption dynamics, binding ability, and selectivity of quantum dot-labeled molecularly imprinted polymers were evaluated. The dosage of quantum dots for labeling the molecularly imprinted polymers was optimized. The results showed that the optimized dose of quantum dots was 200?µL using a concentration of 8.0?µM. The microsphere size was approximately 10?µm with a honeycombed surface. The quantum dot-labeled molecularly imprinted polymers had an even brightness and a high selectivity. In the presence of different concentrations of chlorpyrifos, a decrease in the fluorescence intensity of the quantum dot-labeled molecularly imprinted polymer was clearly identified by flow cytometry. The whole detection process was accomplished within 2?h including pretreatment. This method was used for the determination of chlorpyrifos in tap water samples.  相似文献   

2.
Fluorescent molecularly imprinted polymer-coated CdSe/ZnS quantum dots were prepared in an efficient one-step synthesis. Their application as fluorescent nanoparticles for the direct quantification of cholesterol in milk was characterized. The quantum dots were used as cores to produce fluorescence. The molecularly imprinted polymer shells provided specific binding sites for cholesterol. The system exhibited good linearity for cholesterol from 0.5 to 150?µg?mL?1, a low detection limit of 0.15?µg?mL?1, and acceptable reproducibility with a relative standard deviation of 4.2% for six replicates. The molecularly imprinted polymer-coated quantum dots were used to determine cholesterol in fortified milk. Recoveries were from 87.0 to 105.2% and a possible mechanism is proposed. The fluorescent molecularly imprinted polymer-coated quantum dots exhibited excellent selectivity and provide a simple, rapid, selective, and effective analytical approach.  相似文献   

3.
In this study, anti-Vibrio parahaemolyticus polyclonal and monoclonal antibodies were prepared through intradermal injection immune and lymphocyte hybridoma technique respectively. CdTe quantum dots (QDs) were synthesized at pH 9.3, 98 °C for 1 h with stabilizer of 2.7:1. The fluorescence intensity was 586.499, and the yield was 62.43 %. QD probes were successfully prepared under the optimized conditions of pH 7.4, 37 °C for 1 h, 250 μL of 50 mg/mL EDC?·?HCl, 150 μL of 4 mg/mL NHS, buffer system of Na2HPO4-citric acid, and 8 μL of 2.48 mg/mL polyclonal antibodies. As gold nanoparticles could quench fluorescence of quantum dots, the concentration of V. parahaemolyticus could be detected through measuring the reduction of fluorescence intensity in immune sandwich reaction composed of quantum dot probe, gold-labeled antibody, and the sample. For pure culture, fluorescence intensity of the system was proportional with logarithm concentration of antigen, and the correlation coefficient was 99.764 %. The fluorescence quenching immunoassay based on quantum dots is established for the first time to detect Vibrio parahaemolyticus. This method may be used as rapid testing procedure due to its high simplicity and sensitivity.  相似文献   

4.
In this study, we describe hybridization design probes consisting of paramagnetic particles and quantum dots (QDs) with targeted DNA, and their application for detection of avian influenza virus (H5N1). Optical properties of QDs were beneficial, but the main attention was paid to the electroactivity of metal part of QDs and ODNs themselves. Differential pulse voltammetry was used for detection of cadmium(II) ions and square wave voltammetry for detection of cytosine–adenine peak in ODN-SH-Cd complex. It clearly follows from the obtained results that the optimized conditions were temperature of hybridization 25 °C, time of hybridization 35 min, and concentration of ODN-SH-Cd complex 20 μg mL?1. The detection limit (3 signal/noise) was estimated as 15 ng mL?1 of ODN-SH-Cd.  相似文献   

5.
Sulfamethazine, one of the most widely applied feed additives, has been shown to cause negative health effects to humans. In the present work, a novel and facile fluorescence visual detection probe was established to determine sulfamethazine in milk samples with naked-eye detection. Considering the good stability, excellent optical properties, and easy synthesis, blue-emission carbon dots were used as the standard signal and red-emission CdTe quantum dots as the responsive signal for the determination of sulfamethazine. The fluorescence intensity of red-emission CdTe quantum dots was gradually quenched with increasing concentration of sulfamethazine, while the blue-emission carbon dots response remained constant. Apparent color variations were observed by naked-eye detection in the concentration range from 9.0 to 54?µmol?·?L?1. In addition, the presented strategy was shown to be promising to provide a rapid, facile, and sensitive method for the determination of sulfamethazine in milk samples with few interferences.  相似文献   

6.
A method has been developed for the rapid determination of calf thymus (ct) DNA that is based on the photoinduced electron transfer (PET) that occurs between CdTe quantum dots and the ruthenium(II)tris-bipyridyl complex. The latter quenches the photoluminescence (PL) of the quantum dots through PET. The Stern-Volmer quenching constant is 2,500 L?mol?1. The intensity of the PL the system is recovered in the presence of ct DNA, and relative recovered PL intensity is linearly proportional to the concentration of ct-DNA. The dynamic range is from 17?µM to 1.5 mM of DNA, and the detection limit (at S/N?=?3) is 5.7?µM. The relative standard deviation (at 0.5 mM of ct-DNA) is 4.1% (n?=?11). A possible reaction mechanism is discussed.  相似文献   

7.
A novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated on a glassy carbon electrode (GCE) for ultra trace levels of α-fetoprotein (AFP) based on sandwich immunoreaction strategy by enrichment using magnetic capture probes and quantum dots coated with Au shell (CdS-Au) as the signal tag. The capture probe was prepared by immobilizing the primary antibody of AFP (Ab1) on the core/shell Fe3O4-Au nanoparticles, which was first employed to capture AFP antigens to form Fe3O4-Au/Ab1/AFP complex from the serum after incubation. The product can be separated from the background solution through the magnetic separation. Then the CdS-Au labeled secondary antibody (Ab2) as signal tag (CdS-Au/Ab2) was conjugated successfully with Fe3O4-Au/Ab1/AFP complex to form a sandwich-type immunocomplex (Fe3O4-Au/Ab1/AFP/Ab2/CdS-Au), which can be further separated by an external magnetic field and produce ECL signals at a fixed voltage. The signal was proportional to a certain concentration range of AFP for quantification. Thus, an easy-to-use immunosensor with magnetic probes and a quantum dots signal tag was obtained. The immunosensor performed at a level of high sensitivity and a broad concentration range for AFP between 0.0005 and 5.0 ng mL−1 with a detection limit of 0.2 pg mL−1. The use of magnetic probes was combined with pre-concentration and separation for trace levels of tumor markers in the serum. Due to the amplification of the signal tag, the immunosensor is highly sensitive, which can offer great promise for rapid, simple, selective and cost-effective detection of effective biomonitoring for clinical application.  相似文献   

8.
In this paper we describe the fabrication and characterization of new liposome encapsulated quantum dot–fluorescence resonance energy transfer (FRET)-based probes for monitoring the enzymatic activity of phospholipase A2. To fabricate the probes, luminescent CdSe/ZnS quantum dots capped with trioctylphosphine oxide (TOPO) ligands were incorporated into the lipid bilayer of unilamellar liposomes with an average diameter of approximately 100 nm. Incorporating TOPO capped quantum dots in liposomes enabled their use in aqueous solution while maintaining their hydrophobicity and excellent photophysical properties. The phospholipid bilayer was labeled with the fluorophore NBD C6-HPC (2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexa decanoyl-sn-glycero-3-phosphocholine). The luminescent quantum dots acted as FRET donors and the NBD dye molecules acted as FRET acceptors. The probe response was based on FRET interactions between the quantum dots and the NBD dye molecules. The NBD dye molecules were cleaved and released to the solution in the presence of the enzyme phospholipase A2. This led to an increase of the luminescence of the quantum dots and to a corresponding decrease in the fluorescence of the NBD molecules, because of a decrease in FRET efficiency between the quantum dots and the NBD dye molecules. Because the quantum dots were not attached covalently to the phospholipids, they did not hinder the enzyme activity as a result of steric effects. The probes were able to detect amounts of phospholipase A2 as low as 0.0075 U mL?1 and to monitor enzyme activity in real time. The probes were also used to screen phospholipase A2 inhibitors. For example, we found that the inhibition efficiency of MJ33 (1-hexadecyl-3-(trifluoroethyl)-sn-glycero-2-phosphomethanol) was higher than that of OBAA (3-(4-octadecyl)benzoylacrylic acid).  相似文献   

9.
Zhang CY  Johnson LW 《The Analyst》2006,131(4):484-488
We report a homogenous method for rapid and sensitive detection of nucleic acids using two-color quantum dots (QDs) based on single-molecule coincidence detection. The streptavidin-coated quantum dots functioned as both a nano-scaffold and as a fluorescence pair for coincidence detection. Two biotinylated oligonucleotide probes were used to recognize and detect specific complementary target DNA through a sandwich hybridization reaction. The DNA hybrids were first caught and assembled on the surface of 605 nm-emitting QDs (605QDs) through specific streptavidin-biotin binding. The 525 nm-emitting QDs (525QDs) were then added to bind the other end of DNA hybrids. The coincidence signals were observed only when the presence of target DNA led to the formation of 605QD/DNA hybrid/525QD complexes. In comparison with a conventional QD-based assay, this assay provided high detection efficiency and short analysis time due to its high hybridization efficiency resulting from the high diffusion coefficient and no limitation of temperature treatment. This QD-based single-molecule coincidence detection offers a simple, rapid and ultra sensitive method for genomic DNA analysis in a homogenous format.  相似文献   

10.
《Analytical letters》2012,45(14):2195-2207
Copper-doped zinc selenide quantum dots modified with mercaptopropionic acid were prepared. The fluorescence quenching of the quantum dots was directly proportional to sparfloxacin concentration. A novel method was established to determine sparfloxacin using the copper-doped zinc selenide quantum dots as fluorescent probes. The interaction between the quantum dots and sparfloxacin was investigated by fluorescence and absorption spectroscopies. A linear relationship was obtained between the quenched fluorescence and sparfloxacin concentration from 1 × 10?6 to 1.8 × 10?5 moles per liter in KH2PO4-Na2HPO4 buffer at pH 7.5 using copper-doped zinc selenide quantum dots at 2.9 × 10?6 moles per liter. The limit of detection for sparfloxacin was 2.4 × 10?9 moles per liter. The method was used for the determination of sparfloxacin in tablets and water with satisfactory results.  相似文献   

11.
Naphthalene diimide ( 1 ) carrying cysteines at the termini of amide substituents were synthesized to act as a molecular staple of double stranded DNA. Since 1 is able to bind to double stranded DNA with threading intercalation, the complex of 1 with double stranded DNA can be topologically immobilized on a gold surface through the S? Au linkage as confirmed by cyclic voltammetric experiment. Ferrocenyl‐double stranded 23‐mertic oligonucleotide, dsFcODN, was immobilized on gold electrode with 1.0×1012 molecules cm?2 when electrode was treated with 2.0 µM dsFcODN and 4.0 µM 1 for 1 h at room temperature. The coverage density was similar to that obtained for the terminal thiol‐modified oligonucleotide. Compound 1 was applied to detect the 321‐meric PCR product of P. gingivalis, which is important in the diagnosis of periodontal disease. This experiment, coupled with the use of ferrocenylnaphthalene diimide, FND as electrochemical indicator for double stranded DNA, resulted in quantitative detection of PCR product within the range of 10 pg µL?1–10 ng µL?1 (15 nM–15 µM). The 1 and FND established a simple and rapid detection method of double stranded PCR product with a detection limit of 10 pg µL?1 (15 nM).  相似文献   

12.
Protein microarrays and quantum dot probes for early cancer detection   总被引:3,自引:0,他引:3  
We describe here a novel approach for detection of cancer markers using quantum dot protein microarrays. Both relatively new technologies; quantum dots and protein microarrays, offer very unique features that together allow detection of cancer markers in biological specimens (serum, plasma, body fluids) at pg/ml concentration. Quantum dots offer remarkable photostability and brightness. They do not exhibit photobleaching common to organic fluorophores. Moreover, the high emission amplitude for QDs results in a marked improvement in the signal to noise ratio of the final image. Protein microarrays allow highly parallel quantitation of specific proteins in a rapid, low-cost and low sample volume format. Furthermore the multiplexed assay enables detection of many proteins at once in one sample, making it a powerful tool for biomarker analysis and early cancer diagnostics.

In a series of multiplexing experiments we investigated ability of the platform to detect six different cytokines in protein solution. We were able to detect TNF-, IL-8, IL-6, MIP-1β, IL-13 and IL-1β down to picomolar concentration, demonstrating high sensitivity of the investigated detection system.

We have also constructed and investigated two different models of quantum dot probes. One by conjugation of nanocrystals to antibody specific to the selected marker—IL-10, and the second by use of streptavidin coated quantum dots and biotinylated detector antibody. Comparison of those two models showed better performance of streptavidin QD–biotinylated detector antibody model. Data quantitated using custom designed computer program (CDAS) show that proposed methodology allows monitoring of changes in biomarker concentration in physiological range.  相似文献   


13.
《Analytical letters》2012,45(11):1964-1974
Abstract

Cysteamine-stabilized CdTe quantum dots were used to directly conjugate with single stranded DNA through electrostatic attraction between positive amino function groups on the surface of CdTe quantum dots and negatively charged DNA. The conjugates exhibited different optical properties from that of CdTe quantum dots, for example, the fluorescence intensity was enhanced obviously with maximum emission peaks gradually red-shifting, and the conjugates were more stable. Under the optimum conditions, the fluorescence intensity was proportional to concentration of DNA over the range 0.16–0.48 µg/mL. This proposed method demonstrated a versatile tool for the fluorescence probing of target DNA and fluorescence labeling.  相似文献   

14.
A sensitive aptamer-based sandwich-type sensor is presented to detect human thrombin using quantum dots as electrochemical label. CdSe quantum dots were labeled to the secondary aptamer, which were determined by the square wave stripping voltammetric analysis after dissolution with nitric acid. The aptasensor has a lower detection limit at 1 pM, while the sample consumption is reduced to 5 μl. The proposed approach shows high selectivity and minimizes the nonspecific adsorption, so that it was used for the detection of target protein in the human serum sample. Such an aptamer-based biosensor provides a promising strategy for screening biomarkers at ultratrace levels in the complex matrices.  相似文献   

15.
We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng?mL?1, with a detection limit as low as 67 pg?mL?1. The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays.
Figure
?  相似文献   

16.
《Analytical letters》2012,45(11):2117-2132
Abstract

Water-soluble cadmium sulfide (CdS) quantum dots (QD) capped by mercaptoacetic acid were synthesized by aqueous-phase arrested precipitation and characterized by transmission electron microscopy, a spectrofluorometer, and an ultraviolet visible (UV-Vis) spectrophotometer. Based on the fluorescence quenching of CdS QD by selenite in the presence of glutathione (GSH), a simple, rapid, sensitive, and selective detection method for selenite was proposed. Under the optimum conditions, the calibration graph was linear in the range of 0.05 µmol L?1 to 11.2 µmol L?1. The limit of detection is 0.03 µmol L?1. The usefulness of the proposed method was evaluated for the determination of selenite in sodium selenite tablet and sodium selenite and vitamin E injection, and the results agreed with the labeled values. In addition, the effect of foreign ions (common anions and biologically relevant cations) on the fluorescence of the CdS QD was examined to evaluate the selectivity. The quenching mechanism is also described.  相似文献   

17.
Here, a simple one‐step solvothermal procedure was employed to synthesize a nanocomposite containing graphene‐nanosheets and CdS quantum dots (GNs‐CdS QDs). The electrochemical oxidation of chlorpromazine (CPZ) to chlorpromazine‐sulfoxide (CPZ‐SO) onto a GNs‐CdS QDs/ionic liquid (IL) nanocomposite modified glassy carbon (GC) electrode give rise to redox‐active products which showed excellent electrocatalytic and photoelectrocatalytic activity toward NADH oxidation at reduced overpotential. A linear response up to 200 µM was obtained for photoamperometric determination of NADH with detection limit 1 µM. Immobilizing alcohol dehydrogenase(ADH) onto the modified electrode via a simple cross linking procedure, the photoelectrochemical capability of the proposed system toward ethanol biosensing was clearly shown.  相似文献   

18.
CdS quantum dots (QD) were capped with SiO2 via a microemulsion method for reducing the toxicity and imparting the biocompatibility of the CdS QD. The resulting CdS/SiO2 core/shell nanoparticles (NP) showed an improved water‐solubility and stability even in pH 4.0 acidic medium. Their fluorescence could be effectively enhanced in the presence of bovine serum albumin (BSA), due to the passivation effect of BSA on the surface of the NP. Furthermore, the concentration dependence of the fluorescence intensity obeys the Langmuir‐type binding isotherm. Thus a novel fluorescence enhancement method for the determination of BSA has been developed using the less‐toxic CdS/SiO2 core/shell NP as probes. Under optimal conditions, the linear range of calibration curve is 0.6–30 µg·mL?1, and the detection limit is 0.18 µg·mL?1. Compared with the water‐soluble CdS NP without SiO2 shell, the CdS/SiO2 core/shell NP exhibited slightly lower fluorescence response to BSA as well as other coexisting substances, such as heavy and transition metals, due to the inhibition of SiO2 shell. The proposed method was applied to the quantification of BSA in synthetic and serum samples with satisfactory results.  相似文献   

19.
Present work demonstrates the utilization of surface modified polycarbonate (PC) membrane as solid phase and antibody conjugated CdSe/ZnS quantum dots (QDs) as fluorescent label for the sensitive and selective detection of Salmonella typhi (S. typhi) in water in a period of 2.5 h. PC membrane was surface modified with glycine and activated by EDC/NHS for immobilization of S. typhi specific IgG. Antibody immobilized porous PC membrane was incubated with bacteria contaminated water for immunocapturing of S. typhi. Antibody conjugated QDs were also prepared by using carbodiimide chemistry. Both modified PC membrane and quantum dots were characterized by using various modern analytical tools. It was estimated that 1.95 molecules of QDs were successfully bio-conjugated per unit of IgG. PC membrane with captured bacteria was incubated with prepared IgG conjugated QDs for the formation of sandwich complex. Analysis of the regions of interest (ROI) in fluorescent micrographs showed that newly developed method based on PC and fluorescent QDs has 100 times higher detection sensitivity (100 cells/mL) as compared with detection using conventional dye (FITC) based methods.  相似文献   

20.
A resonance light-scattering (RLS) detection method for saccharides was developed using dextran-coated CdSe quantum dots (dextran-CdSe-QDs) optical probes. The dextran-CdSe-QDs can be aggregated with concanavalin A (Con A), and the change in RLS intensity is used to monitor the extent of aggregation. The presence of glucose competitively binds with Con A, dissociating the Con A/dextran-CdSe-QDs complexes, affording the RLS intensity change and hence determining glucose concentrations in the range from a few to about 90 mM. Transmission electron microscopy was used to investigate the competitive interaction between glucose and dextran-CdSe-QDs with Con A. The competitive strategy could also be used to detect similar types of saccharides and the affinities of various monosaccharides for Con A increased in the order galactose?glucose < fructose < mannose. The proposed method was successfully applied to determine glucose in the human serum.

A resonance light-scattering (RLS) detection method for saccharides was developed using dextran-coated CdSe quantum dots (dextran-CdSe-QDs) optical probes. The dextran-CdSe-QDs were coupled to concanavalin A (Con A) to facilitate the aggregation of nanoparticles. The presence of glucose competitively binds with Con A, dissociating the Con A/dextran-CdSe-QDs complexes affording the RLS intensity change and hence determining glucose in the range from a few millimolar to about 90 mM. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号