首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioinspired silver nanoparticles were synthesized using nontoxic, eco-friendly, and novel root extract of Nepeta leucophylla. The reduction of silver nitrate salt into nanoparticles is performed using the root extract, which is rich in polyphenolic and flavonoid contents. The reduction of silver salt by this extract is occurred at several temperatures and the reaction mixture turns brown and displayed representative absorbance spectra of silver nanoparticles. The influence of numerous synthesis parameters such as the concentration of root extract, time, temperature, and reaction pH on the synthesis of silver nanoparticles was also examined. Furthermore, the synthesized silver nanoparticles were characterized by ultraviolet–visible spectroscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and transmission electron and field emission scanning electron microscopy. The formation of silver nanoparticles was enhanced with time, temperature, and at basic pH. The surface plasmon resonance band characteristics of silver nanoparticles were detected at 410?nm in the ultraviolet–visible absorbance spectra. The infrared spectroscopy results show that the extract contains phenol which is responsible for reduction and proteins may be capping the silver nanoparticles which prevent agglomeration. Transmission electron microscopy revealed that silver nanoparticles were spherical and the sizes matched well with X-ray diffraction and theoretical calculations by Mie theory. Furthermore, the antioxidant potential of the synthesized silver nanoparticles was assessed using 2,2-diphenyl-1-picrylhydrazyl assay and showed considerable antioxidant potential.  相似文献   

2.
The application of cysteine-capped silver nanoparticles synthesized using green tea as the reducing agent to immobilize lipase has been reported in the present work. The reducing property of green tea is due to the presence of polyphenolic compounds in its extract which are not oxidized at ambient atmospheric conditions and hence is a suitable reducing agent for green synthesis of nanoparticles. Cysteine-capped silver nanoparticles were synthesized under alkaline conditions by reducing the silver salt by green tea extract in the presence of cystine. Various parameters such as the cystine concentration, pH, temperature, and amount of reducing agent were standardized and their effect on the synthesis process has been initially evaluated by surface plasmon resonance peak analysis. Furthermore, the synthesized nanoparticles were also characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The particle size analysis revealed the average size of the particles to be around 20?nm. The glutaraldehyde-deactivated amino group on cysteine-capped nanoparticles was used to immobilize lipase on its surface. Both crude and immobilized lipases were checked for activity and protein content under standard assay conditions and their activity was found to be 37.7 and 24.9?U?mL?1, respectively. The lipase nanoparticle bioconjugates exhibited a good shelf life of 60 days with a marginal decrease in activity. The bioconjugates showed 15% loss in its initial activity at the end of five reusability cycles. This immobilized reusable system has the potential to be utilized for various applications pertaining to the exploitation of lipase in various industries.  相似文献   

3.
Narrowly dispersed Pb-doped zinc sulfide nanoparticles were synthesized at room temperature using a chemical method in which the nanoparticle surfaces were passivated using mercaptoethanol. The maximum intensity of the broad green luminescence (approximately 530 nm) from these nanoparticles was observed at an optimum dopant concentration of 0.104 Pb wt%. The emission intensity was found to depend on the synthesis pH conditions, thus yielding maximum intensity at 5.0 pH. Comparatively lower emission intensities were observed for the other pH values (2.5-9.0 pH range). This may be due to the pH-dependent Cl- (as well as Na+) incorporation into the ZnS matrix, which possibly helps in inducing required density of impurity (donor/co-activator) states in the energy gap of ZnS nanoparticles. X-ray diffraction analysis using Debye functional analysis showed that the particle size is 2.8+/-0.3 nm.  相似文献   

4.
Resonance light-scattering (RLS) technique was developed for studying the interaction of silver nanoparticles (Ag NPs) with bisphenol A. A simple and environmentally friendly method was developed to synthesize Ag NPs using cinnamon extract. Synthesized nanoparticles were characterized using various measurement techniques. The synthesized Ag NPs were nearly spherical, with the sizes ranging from 30 to 60 nm. Spectral analysis indicated that the cinnamon extract acted as the reducing and capping agents on the surface of Ag NPs. RLS technique was used as the detection method. Light-scattering properties of the synthesized nanoparticles in the presence or absence of bisphenol A was selected as the detection signal. Under the optimal conditions, the linear dynamic range and RSD were found to be 0.01–10.0 mg L?1 and 2.78% (n?=?3), respectively. A limit of detection of 0.005 mg L?1 was obtained for the determination of bisphenol A. The obtained results showed successful application of the method for the analysis of bisphenol A in real samples.  相似文献   

5.
The Pepper leaves extract acts as a reducing and capping agent in the formation of silver nanoparticles. A UV–Vis spectrum of the aqueous medium containing silver nanoparticles demonstrated a peak at 458 nm corresponding to the plasmon absorbance of rapidly synthesized silver nanoparticles that was characterized by UV–Vis spectrophotometer. The morphology and size of the benign silver nanoparticles were carried out by the transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM). The sizes of the synthesized silver nanoparticles were found to be in the range of 5–60 nm. The structural characteristics of biomolecules hosted silver nanoparticles were studied by X-ray diffraction. The chemical composition of elements present in the solution was determined by energy dispersive spectrum. The FTIR analysis of the nanoparticles indicated the presence of proteins, which may be acting as capping agents around the nanoparticles. This study reports that synthesis is useful to avoid toxic chemicals with adverse effects in medical applications rather than physical and chemical methods.  相似文献   

6.
A facile bottom-up 'green' and rapid synthetic route using Murraya Koenigii leaf extract as reducing and stabilizing agent produced silver nanoparticles at ambient conditions and gold nanoparticles at 373 K. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. This method allows the synthesis of well-dispersed silver and gold nanoparticles having size ~10 nm and ~20 nm, respectively. Silver nanoparticles with size ~10 nm having symmetric SPR band centered at 411 nm is obtained within 5 min of addition of the extract to the solution of AgNO3 at room temperature. Nearly spherical gold nanoparticles having size ~20 nm with SPR at 532 nm is obtained on adding the leaf extract to the boiling solution of HAuCl4. Crystallinity of the nanoparticles is confirmed from the high-resolution TEM images, selected area electron diffraction (SAED) and XRD patterns. From the FTIR spectra it is found that the biomolecules responsible for capping are different in gold and silver nanoparticles. A comparison of the present work with the author's earlier reports on biosynthesis is also included.  相似文献   

7.
Green methods using biological extracts, in particular plant-based solutions, have shown great potential for silver nanoparticle synthesis. A microwave-assisted single-step phytosynthesis of silver nanoparticles is described in the present study. The aqueous extract obtained from the Rosa santana (rose) petals was used for the first time in the synthesis. The synthesized nanoparticles obtained after optimized microwave conditions for time and temperature were analyzed by ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta-size analysis. The results obtained from the characterization studies showed that the synthesized nanoparticles were nearly spherical in shape with sizes from 6.52?nm to 25.24?nm with an average particle size of 14.48?nm with a face-centered cubic structure. The antibacterial activities of the synthesized nanoparticles were evaluated and revealed that the silver nanoparticles displayed good inhibition against both Gram-negative and Gram-positive bacteria. Also, the cytotoxic effect of the silver nanoparticles on a mouse fibroblast cell line (L929) was studied by a cell viability assay. The results showed that phytosynthesized silver nanoparticles were nontoxic to the healthy normal cell line at all tested concentrations.  相似文献   

8.
The stability of silver nanoparticles is controlled mainly by two major factors, namely, aggregation and oxidation. In the present study, silver nanoparticles were synthesized by using different series of reducing agents like a strong reducing agent (sodium borohydride), a mild reducing agent (tri-sodium citrate), and a weak reducing agent (glucose) with different capping agents, namely, polyvinyl pyrrolidone (PVP K 30), starch, and sodium carboxyl methyl cellulose (NaCMC). The synthesized silver nanoparticles were characterized by UV-Visible absorption spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM), and anti-microbial activity. The particle size of silver nanoparticles varies in the following order: sodium borohydride < tri-sodium citrate < glucose. Combination of sodium borohydride–polyvinyl pyrrolidone and tri-sodium citrate-polyvinyl pyrrolidone yields stable silver nanoparticles compared to other combinations of reducing agents and capping agents. The stability results confirmed that a refrigerated condition (8°C) was more suitable for storage of silver nanoparticles. Anti-microbial activity of silver nanoparticles synthesized in a sodium borohydride–polyvinyl pyrrolidone mixture shows a larger zone of inhibition compared to other silver nanoparticles. Anti-microbial results confirmed that the anti-microbial activity is better with smaller particle size. The size and stability of silver nanoparticles in the presence of different combinations of stabilizing and capping agents are reported.  相似文献   

9.
The application of microorganisms for the synthesis of metal nanoparticles as an eco-friendly and promising approach is ongoing. In this paper, an attempt has been made to investigate the capability of Leishmania sp. for synthesis of metal nanoparticles from aqueous silver and gold ions. The samples were analyzed by a UV?CVis spectroscopy and the results showed the absorbance peak values at 420 and 540?nm, respectively, for the surface plasmon resonance of silver and gold nanoparticles. The surface morphology of the nanoparticles in solution was visualized by atomic force microscope and scanning electron microscope images, which showed the production of metallic nanoparticles by this protozoan. Fourier transform infrared spectroscopy analyses confirmed the presence of different bands of protein as capping and stabilizing agent on the nanoparticles surfaces. The synthesized silver and gold nanoparticles were with dimensions ranging between 10 and 100?nm for silver and 50?C100?nm for gold. These results of the present study have demonstrated the efficiency of this protozoan for synthesis of nanoparticles, by offering the merits of environmentally friendly, amenability, and time saving for large-scale production.  相似文献   

10.
The green synthesis of irregular-shaped nanomaterials used for various applications in nanoplasmonics, medicine, and biotechnology creates an economical and environmental challenge. We describe the rapid wet-chemical approach to synthesis of stable and water-soluble gold nanostructues at room temperature. In addition to spherical and road-like nanoparticles, gold decahedra and triangular plates were grown using the one-step synthesis process of HAuCl(4) in the presence of honey, in which main components act as reducing (glucose) and stabilizing (fructose) agents; the mechanism of the process is discussed in details. The requirements for anisotropic phase boundaries for generation of polyhedral gold nanocrystals in solutions are highlighted. The synthesis, morphology, and separation procedure of gold nanoparticles are examined using the techniques of optical spectroscopy, transmission electron microscopy, and atomic force microscopy. We demonstrate that centrifugation can be used for efficient separation of nanoparticles with different shapes from a mixture. It was found that while centrifuging, the spheres sediment at the bottom of the tube, segregating from rods that form a deposit on the side wall, whereas polygons remain in the solution.  相似文献   

11.
The development of methodologies for the characterization of silver nanoparticles (AgNPs) synthesized using natural products has received increasing attention, especially to monitoring its stability and size for further application. In this paper, a capillary electrophoretic (CE) method is presented for characterization of AgNPs synthesized using honey or glucose as reducing agents. A simple electrolyte solution composed of 20 mM sodium borate and 20 mM sodium dodecylsulfate (SDS) at pH 8.5 was used for separation of AgNPs within a short analysis time (<12 min). The obtained results were compared with the traditional characterization techniques, such as transmission electron microscopy (TEM) and dynamic light scattering (DLS), showing satisfactory correlation in terms of size distribution. In addition, valuable information about electrophoretic mobility and zeta potential values of AgNPs was obtained by applying the CE-UV/Vis method. Thus, the proposed methodology represents a straightforward tool for the fast and cost-effective characterization of AgNPs within a single analysis, employing minimal amounts of reagents and samples.  相似文献   

12.
This research aims to investigate the influence of soluble starch; lactose; carboxymethyl cellulose; urea; and polyvinylpyrrolidone on synthesis of zinc oxide nanoparticles (ZnO-NPs). Zinc acetate was used as a precursor under alkaline conditions to produce ZnO-NPs as a low-cost and efficient antimicrobial and UV-blocking agent. Characterization and antimicrobial functional properties of prepared nanoparticles were investigated and reported using FTIR, TGA, XRD, TEM, analysis, as well as antimicrobial assay, respectively. The results revealed that the thermal decomposition profile, size of ZnO-NPs, IR spectra, as well as antimicrobial activity of the prepared ZnO-NPs is governed by the type of capping agents. Crystallinity analysis showed identical patterns in peak intensities and width irrespective of the used capping agents. On the other hand, the obtained results disclosed that using soluble starch as a capping agent results in attaining lower particle size of 3–5 nm and higher antimicrobial efficacy as compared with the other capping agents.  相似文献   

13.
高琪  朱小芹  翟良君 《化学通报》2019,82(12):1093-1097
以氯化铜为前躯体,葡糖糖为还原剂,烷基胺(十六胺和十八胺的混合物)为络合剂和表面包覆剂,经过络合反应和溶剂热两步反应首先得到形貌均一、直径约为100 nm的铜纳米颗粒, 随后自发生长为五重孪晶铜纳米棒(仍含有部分颗粒)。实验过程中分别对溶剂热反应1 h、3 h和5 h后的还原产物的形貌特征加以表征,可以推断被还原的铜原子首先均匀成核形成初级铜纳米颗粒,经过奥斯特瓦尔德老化过程生长为五重孪晶的次级铜纳米颗粒,由于孪晶结构具有很高的生长活性,在烷基胺的表面包覆作用下生长为各项异性的铜纳米棒。该方法提供了一种有效的铜纳米棒的制备方法并且降低了一维铜纳米材料的合成成本。  相似文献   

14.
We report on the synthesis of highly monodisperse iron nanoparticles, using a chemical reduction method. Iron nanoparticles with an average diameter of 6 nm and a geometric standard deviation of 1.3 were synthesized at a pH of 9.50 from ferric chloride precursor with sodium borohydride as the reducing agent, polyacrylic acid as the dispersing agent, and palladium ions as seeds for iron nanoparticle nucleation. The resulting nanoparticles were ferromagnetic at 5 K and superparamagnetic at 350 K. The dispersing agent polyacrylic acid (PAA) was shown to prevent iron nanoparticles and possibly palladium clusters from aggregating; in the absence of PAA, only aggregated iron nanoparticles were obtained. The addition of palladium ions decreased the diameter of iron nanoparticles presumably by providing sites for heterogeneous nucleation onto palladium clusters. In the absence of palladium ions, the mean diameter of iron nanoparticles was approximately 110 nm and the standard deviation increased to 2.0. The pH of the solution also was found to have a significant effect on the particle diameter, likely by affecting PAA ionization and altering the conformation of the polymer chains. At lower pH (8.75), the PAA is less ionized and its ability to disperse palladium clusters is reduced, so the number of palladium seeds decreases. Therefore, the resulting iron nanoparticles were larger, 59 nm in diameter, versus 6 nm for nanoparticles formed at a pH of 9.50.  相似文献   

15.
《中国化学会会志》2017,64(11):1354-1359
High‐purity, large‐aspect‐ratio, and well‐dispersed copper nanowires (CuNWs) with an average diameter of 45 nm and length >100 μm were successfully synthesized by reducing a Cu(II) salt with glucose, with oleylamine (OM) and oleic acid (OA) serving as dual capping agents, through hydrothermal reduction. A systematic study of the effects of the copper salt, capping agents, reductant, and temperature on the morphology of CuNWs has been conducted. Our results indicate that CuNWs with different diameters can be obtained using different copper salts. The diameter of the as‐prepared CuNWs decreases with increasing amounts of OM/OA and glucose but increases with the increasing temperature of the reaction. By adjusting the experimental parameters, we could achieve controlled synthesis of CuNWs and obtain high‐quality CuNWs with different diameters of 45, 76, 85, 90, 100, 112, 135, and 175 nm.  相似文献   

16.
Present study used ecofriendly, cost efficient and easy method for synthesis of silver nanoparticles (Ag NPs) at the room temperature by Thymus Kotschyanus extract as reducing and capping agent. Various analytical technique including UV–Vis absorption spectroscopy determined presence of Ag NPs in the solution, the functional groups of Thymus Kotschyanus extract in the reduction and capping process of Ag NPs are approved by FT‐IR, crystallinity with the fcc plane approved from the X‐ray diffraction (XRD) pattern, energy dispersive spectroscopy (EDS) determined existence of elements in the sample, surface morphology, diverse shapes and size of present Ag NPs were showed by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Beginning and end destroy temperature of present silver nanoparticles were determined by thermal gravimetric spectroscopy (TGA). In addition, antibacterial, antioxidant and cytotoxicity properties of Ag NPs were studied. Agar disk and agar well diffusion are the methods to determined antibacterial properties of synthesized Ag NPs. Also MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) were recognized by macro broth dilution assay. DPPH free radical scavenging assay was used for antioxidant property and compare to butylated hydroxytoluene (BHT) as standard antioxidant that showed high antioxidant activity more than BHT. Synthesized Ag NPs have great cell viability in a dose depended manner and demonstrate that this method for synthesis silver nanoparticles provided nontoxic. The average diameter of synthesized Ag NPs was about 50–60 nm.  相似文献   

17.
The potential use of alanine for the production of nanoparticles is presented here for the first time. Silver nanoparticles were synthesized using a simple green method, namely the thermal treatment of silver nitrate aqueous solutions with dl-alanine. The latter compound was employed both as a reducing and a capping agent. Particles with average size equal to 7.5 nm, face-centered cubic crystalline structure, narrow size distribution, and spherical shape were obtained. Interaction between the silver ions present on the surface of the nanoparticles and the amine group of the dl-alanine molecule seems to be responsible for reduction of the silver ions and for the stability of the colloid. The bio-hybrid nano-composite was used as an ESR dosimeter. The amount of silver nanoparticles in the nanocomposite was not sufficient to cause considerable loss of tissue equivalency. Moreover, the samples containing nanoparticles presented increased sensitivity and reduced energetic dependence as compared with pure dl-alanine, contributing to the construction of small-sized dosimeters.  相似文献   

18.
Silver nanoplates, with average size tunable from 50 to 500 nm, have been synthesized via a simple room-temperature tannic acid (TA) solution-phase chemical reduction method. The synthesis was a seedless process in which tannic acid was used as a reducing as well as a capping agent, and did not need any other surfactant or capping agent to direct the anisotropic growth of the silver nanoparticles. The morphology of silver nanoplates has been confirmed by transmission electron microscopy, the growth process of nanoplates has been studied by UV/vis spectroscopy. Control experiments have been explored for a more thorough understanding of the growth mechanism. It was found that both the concentrations of TA and the pH of solution were the key elements to control the morphology silver nanoplates. The optical in-plane dipole plasmon resonance bands of these silver plates could be tuned from 520 to 1100 nm.  相似文献   

19.
ABSTRACT

Silver nanoparticles were synthesized by the bottom-up approach using Salvia officinalis extract, and their growth process was correlated with changes in their ultraviolet–visible spectra. Experiments were performed at different initial mixing ratios of silver nitrate to plant extract and at pH values to outline a pattern concerning the growth of silver nanoparticles obtained by this synthesis procedure. Relative areas calculated from the spectra from 350 to 600?nm were used as a comparison for the growth dynamics of silver nanoparticles synthesized in mixtures with different compositions. The graphical representation of relative areas vs. time presents four stages of nanoparticle growth with each linear portion corresponding to a different process rate.  相似文献   

20.
Dubas ST  Pimpan V 《Talanta》2008,76(1):29-33
Silver nanoparticles synthesized by a reagent less method involving only UV radiation have been used in colorimetric assay for the detection of ammonia in solution. The silver nanoparticles were synthesized by the exposure of a silver nitrate solution to a low-power UV source in the presence of poly(methacrylic acid) (PMA), which acted both as reducing and capping agent. The synthesis of the silver nanoparticles was studied by monitoring the changes in position and amplitude of the localized plasmon resonance (LSPR) band using UV-vis spectroscopy. The morphology of the particles was studied using transmission electron microscopy which confirmed the formation of spherical particles with an average particle size around 8 nm. Interestingly, the silver nanoparticles solution was found to display a strong color shift from purple to yellow upon mixing with increasing concentration of ammonia ranging from 5 to 100 ppm. Hence, the nanoparticles prepared with this method could be used as colorimetric assay for sensing applications of ammonia in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号