首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vesicles composed of N-[3-(dimethylamino) propyl]-octadecanamide (DMAPODA) and 2-(hexadecyloxy) cinnamic acid (HOCA) in an equimolar ratio were prepared by taking advantage of salt bridge formed between the amino group and the carboxylic group. The structure of vesicle was observed on a Transmission electron microscopy (TEM), and the size was determined on a dynamic light scattering equipment. The phase transition of the vesicular membrane was found to be around 35 °C on a differential scanning calorimeter. HOCA of the vesicular membrane was readily dimerized under the irradiation of a UV light (λ?=?254 nm, 6 W). The release degree of rhodamine B from vesicle suspended in distilled water (pH 6.8) was about 70 % in 1 h at 25 °C, and the UV irradiation during the release experiment had little effect on the release degree. However, it had a significant effect when the temperature of release medium was 40 °C. Upon the photodimerization, HOCA would readily change its orientation in the vesicular membrane vesicle at 40 °C, possibly because the vesicular membrane is in a liquid crystalline state at the temperature, which is higher than the phase transition temperature (around 35 °C). In addition, the vesicle released rhodamine B in a pH-dependent manner. The release degrees were the highest at pH 3.0 and the lowest at pH 9.0 among the pH values tested. The salt bridge formed between DMAPODA and HOCA is labile at a strong acidic condition so it would be responsible for the extensive release at pH 3.0.  相似文献   

2.
Vesicles containing rhodamine B were prepared by evaporation and hydration method using N-[3-(dimethylamino)propyl]-octadecanamide (DMAPODA) and stearic acid (SA). The vesicles were multi-lamellar on optical and electron micrographs. The mean size of vesicle was 807.9 nm and the values markedly increased by the addition of copolymers of N-isopropylacrylamide (NIPAM) and methacrylic acid (MAA) (P(NIPAM-co-MAA)), possibly due to electrostatic interactions between the cationic vesicle and the anionic copolymer. The release of rhodamine B from the vesicles for 20 h was 50–60% at neutral pHs and the values increased up to 93.1% when pH decreased to 3. The increased release is possibly because the salt bridge formed between DMAPODA and SA was broken down at the acidic pH, leading to the disintegration of the vesicles. On the other hand, the release was not as sensitive to temperature as it was to pH. The salt bridge seemed to be stable at the temperatures of the release experiments (23 °C, 33 °C and 43 °C). P(NIPAM-co-MAA) was added to the suspension of the vesicle and the release was investigated with varying pHs and temperatures. The copolymer was pH- and temperature-sensitive in terms of the turbidity change of its solution. Nevertheless, the copolymer was found to have little effect on the pH- and temperature-dependent release of the vesicles.  相似文献   

3.
Novel self-reproducing giant vesicles, consisting of a vesicular amphiphile with an imine group in its hydrophobic chain, were constructed. This vesicular amphiphile, the product of a dehydrocondensation reaction between amphiphilic aldehyde and a lipophilic aniline derivative, could be prepared within the giant vesicles. When a protected form of the aldehyde precursor was added to a suspension of giant vesicles containing the lipophilic aniline precursor and a catalyst, dehydrocondensation between the two precursors took place inside the vesicles and produced the same amphiphile as the one which constitutes the original vesicle. The newly formed amphiphiles self-assembled in the inner water pool to form small vesicles, which were eventually extruded through the outer layer of the original vesicle to the bulk water. Accordingly, this kinetic system can be designated as a self-reproducing system of giant vesicles.  相似文献   

4.
An ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), and a double-chained cationic surfactant, dimethyldimyristylammonium bromide (DTDAB), could form positively charged catanionic vesicles with a potential application in gene delivery. To improve the gene delivery efficiency, the addition of CaCl2 into cationic liposomal systems has been proposed in the literature. In this study, detrimental effect of calcium chloride on the physical stability of the positively charged HTMA-DS/DTDAB catanionic vesicles was demonstrated by the size and zeta potential analyses of the vesicles. It was noted that the reduced electrostatic interaction between the catanionic vesicles could not fully explain the lowered physical stability of the vesicles in the presence of CaCl2. Apparently, the molecular packing/interaction in the vesicular bilayers played an important role in the vesicle physical stability. To modify the molecular packing/interaction in the vesicular bilayers, cholesterol was adopted as an additive to form catanionic vesicles with HTMA-DS/DTDAB. It was found that the physical stability of the catanionic vesicles was significantly improved with the presence of cholesterol in the vesicular bilayers even in the presence of 50 mM CaCl2. An infrared analysis suggested that with the incorporation of cholesterol into HTMA-DS/DTDAB vesicular bilayers, the alkyl chain motion was enhanced, and the molecular packing became less ordered. The cholesterol-induced fluidic bilayer characteristic allowed the vesicular bilayers to be adjusted to a stable status, resulting in improved physical stability of the catanionic vesicles even in the presence of CaCl2 with a high concentration.  相似文献   

5.
A small amphiphile consisting of hydrophilic tetraethylene glycol monoacrylate and hydrophobic alkyl chain which were connected by an o-nitrobenzyl unit, a photolabile group, was designed and synthesized. The critical aggregate concentration of the synthesized amphiphile was determined to be about 3 × 10(-5) M by the fluorescence probe technique. Nanosized vesicles were prepared and stabilized by in-situ radical polymerization without altering the morphology. The polymeric vesicle was highly stable which retained vesicular shape under dilution or UV irradiation. Hydrophobic guests can be encapsulated within the vesicle membrane and released out of the vesicle by UV stimulus through splitting the amphiphilic structure of the amphiphile. Distinguished dose-controlled photorelease of the polymeric vesicle is achieved due to the maintenance of the vesicular shape integrity which makes the guest release depend on the cleavage amount of amphiphilic structure during UV irradiation. This study provides a promising strategy to develop stable drug delivery systems for sustained and phototriggered release.  相似文献   

6.
In this study, a pseudodouble-chained ion pair amphiphile, hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), was prepared from a mixture of cationic surfactant, hexadecyltrimethylammonium bromide, and anionic surfactant, sodium dodecylsulfate. Positively charged catanionic vesicles were then successfully fabricated from HTMA-DS with the addition of cationic surfactants, dialkyldimethylammonium bromide (DXDAB), including ditetradecyldimethylammonium bromide (DTDAB), dihexadecyldimethylammonium bromide, and dioctadecyldimethylammonium bromide (DODAB), with a mechanical disruption approach. The control of charge characteristic and physical stability of the catanionic vesicles through the variations of DXDAB molar fraction and alkyl chain length was then explored by size, zeta potential, and Fourier transform infrared analyses. It was found that the molecular packing and/or molecular interaction of HTMA-DS with DXDAB rather than the electrostatic repulsion between the charged vesicles dominated the physical stability of the mixed HTMA-DS/DXDAB vesicles. The presence of DTDAB, which possesses short alkyl chains, could adjust the packing of the unmatched chains of HTMA+ and DS? and promote the vesicle formation. However, the weak molecular interaction due to the short chains of DTDA+ could not maintain the vesicle structures in long-term storage. With increasing the alkyl chain length of DXDAB, it was possible to improve the vesicle physical stability through the enhanced molecular interaction in the vesicular bilayer. However, the long alkyl chains of DODAB unmatched with those of HTMA-DS, resulting in the vesicle disintegration in long-term storage. For the formation of stable charged catanionic vesicles of HTMA-DS/DXDAB, a good match in hydrophobic chains and strong molecular interaction were preferred for the vesicle-forming molecules.  相似文献   

7.
郭霞  李华  郭荣 《物理化学学报》2010,26(8):2195-2199
DNA(包括寡聚核苷酸)和阳离子表面活性剂可形成难溶复合物.本文通过浊度测试和透射电子显微镜观察,发现单链阳离子表面活性剂可以诱使寡聚核苷酸/单链阳离子表面活性剂沉淀转变成为寡聚核苷酸/单链阳离子表面活性剂囊泡,且寡聚核苷酸/单链阳离子表面活性剂囊泡可以与寡聚核苷酸/单链阳离子表面活性剂沉淀共存.在寡聚核苷酸/单链阳离子表面活性剂沉淀向囊泡的转变过程中,表面活性剂和沉淀之间的疏水作用力发挥了重要作用.此外,当体系温度达到寡聚核苷酸开始融解的温度后,寡聚核苷酸/单链阳离子表面活性剂体系更容易形成囊泡.因此,寡聚核苷酸的链越伸展,越易于寡聚核苷酸/单链阳离子表面活性剂囊泡的生成.据我们所知,有关寡聚核苷酸/阳离子表面活性剂囊泡的报道尚不多见.因此,考虑到DNA(包括寡聚核苷酸)/两亲分子体系在医学、生物学、药学和化学中的重要性,该研究应该有助于我们进一步了解该体系并对其进行更合理有效的应用.  相似文献   

8.
The physical stability of catanionic vesicles is important for the development of novel drug or DNA carriers. For investigating the mechanism by which catanionic vesicles are stabilized, molecular dynamics (MD) simulation is an attractive approach that provides microscopic structural information on the vesicular bilayer. In this study, MD simulation was applied to investigate the bilayer properties of catanionic vesicles composed of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), and a double-tailed cationic surfactant, ditetradecyldimethylammonium chloride (DTDAC). Structural information regarding membrane elasticity and the organization and conformation of surfactant molecules was obtained based on the resulting trajectory. Simulation results showed that a proper amount of DTDAC could be used to complement the asymmetric structure between HTMA and DS, resulting in an ordered hydrocarbon chain packing within the rigid membrane observed in the mixed HTMA-DS/DTDAC system. The coexistence of gel and fluid phases was also observed in the presence of excess DTDAC. MD simulation results agreed well with results obtained from experimental studies examining mixed HTMA-DS/DTDAB vesicles.  相似文献   

9.
A small amphiphile that contains a coumarin unit and alkynyl groups, as a two‐photon‐cleavable segment and polymerizable groups, respectively, was designed and synthesized. The amphiphile showed a critical aggregation concentration of about 4.6×10?5 M and formed a vesicle‐type assembly. The formed vesicles were stabilized by in situ “click” polymerization without altering their morphology. Hydrophobic and hydrophilic guests can be encapsulated within the vesicle membrane and inside the aqueous core of the vesicle, respectively. The loaded guests can be released from the vesicle by using UV or near‐IR stimuli, through splitting up the amphiphilic structure of the amphiphile. Distinguished dose‐controlled photorelease of the polymeric vesicle is achieved with the maintenance of vesicular integrity, which makes the guest release dependent on the amount of cleavage of the amphiphilic structure during irradiation. This study provides a potential strategy for the development of versatile and stable drug‐delivery systems that offer sustained and photo‐triggered release.  相似文献   

10.
The membrane properties of phospholipid vesicles can be manipulated to both regulate and initiate encapsulated biochemical reactions and networks. We present evidence for the inhibition and activation of reactions encapsulated in vesicles by the exogenous addition of charged amphiphiles. While the incorporation of cationic amphiphile exerts an inhibitory effect, complementation of additional anionic amphiphiles revitalize the reaction. We demonstrated both the simple hydrolysis reaction of β-glucuronidase and the in vitro gene expression of this enzyme from a DNA template. Furthermore, we show that two vesicle populations decorated separately with positive and negative amphiphiles can fuse selectively to supply feeding components to initiate encapsulated reactions. This mechanism could be one of the rudimentary but effective means to regulate and maintain metabolism in dynamic artificial cell models.  相似文献   

11.
检测维生素C的囊泡荧光传感器的制备   总被引:1,自引:0,他引:1  
利用合成的含有识别基团苯硼酸和荧光读出基团萘的新型双亲化合物(DNMPBA)在THF/水选择性溶剂中自组织成囊泡,囊泡的相变温度为56.8℃;当向囊泡体系加维生素C时,DNMPBA囊泡中的萘生色基在345nm的荧光峰强度急剧减弱.荧光强度减弱归于所形成的硼酸酯增强了DNMPBA双亲化合物中一个氧原子孤对电子对萘生色基的淬灭作用.DNMPBA囊泡与维生素C的相互作用而导致体系荧光强度变化,使该体系有可能应用于检测生物物质如维生素C的化学传感器.  相似文献   

12.
The interaction between DNA and surfactant has both biological and technological significances. Recently, we reported for the first time that oligo d(C)25 can induce single‐chained cationic surfactant molecules to aggregate into vesicles. In this article, we studied systematically the formation of vesicles from traditional single‐chained cationic surfactant molecules in the presence of a series of oligonucleotides and found that the facilitation efficiency of oligonucleotide on vesicle formation depends on its size and base composition. Oligo d(T)n cannot induce vesicle formation, whereas the other oligonucleotides can. Moreover, the oligonucleotide with a bigger size or with a hairpin structure favors vesicle formation more, and the increases in the size of the head group and/or the length of the alkyl group of surfactant decrease the facilitation efficiency of oligonucleotide. Since so far, there is very limited report about the vesicle formation in DNA/single‐chained cationic surfactant solution, this study could be expected to increase the efficiency and applicability for DNA/amphiphile system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 434–449, 2009  相似文献   

13.
The encapsulation of DNA by catanionic vesicles has been investigated; the vesicles are composed of one cationic surfactant, in excess, and one anionic. Since cationic systems are often toxic, we introduced a novel divalent cationic amino-acid-based amphiphile, which may enhance transfection and appears to be nontoxic, in our catanionic vesicle mixtures. The cationic amphiphile is arginine-N-lauroyl amide dihydrochloride (ALA), while the anionic one is sodium cetylsulfate (SCS). Vesicles formed spontaneously in aqueous mixtures of the two surfactants and were characterized with respect to internal structure and size by cryogenic transmission electron microscopy (cryo-TEM); the vesicles are markedly polydisperse. The results are compared with a study of an analogous system based on a short-chained anionic surfactant, sodium octylsulfate (SOS). Addition of DNA to catanionic vesicles resulted in associative phase separation at very low DNA concentrations; there is a separation into a precipitate and a supernatant solution; the latter is first bluish but becomes clearer as more DNA is added. From studies using cryo-TEM and small angle X-ray scattering (SAXS) it is demonstrated that there is a lamellar structure with DNA arranged between the amphiphile bilayers. Comparing the SOS containing DNA-vesicle complexes with the SCS ones, an increase in the repeat distance is perceived for SCS. Regarding the phase-separating DNA-amphiphile particles, cryo-TEM demonstrates a large and nonmonotonic variation of particle size as the DNA-amphiphile ratio is varied, with the largest particles obtained in the vicinity of overall charge neutrality. No major differences in phase behavior were noticed for the systems here presented as compared with those based on classical cationic surfactants. However, the prospect of using these systems in real biological applications offers a great advantage.  相似文献   

14.
We report our findings on the macromolecule-to-amphiphile conversion process of a polyoxometalate-polymer hybrid and the assembled hybrid vesicles formed by aggregation of the hybrid amphiphile. The polyoxometalate-polymer hybrid is composed of a polyoxometalate (POM) cluster, which is covered by five tetrabutylammonium (Bu(4) N(+) ) countercations, and a polystyrene (PS) chain. Through a cation-exchange process the Bu(4) N(+) countercations can be replaced by protons to form a hybrid amphiphile composed of a hydrophilic, protonated POM cluster and a hydrophobic PS chain. By implementing a directed one-dimensional diffusion and analyzing the diffusion data, we confirmed that the diffusion of solvated protons rather than macromolecules or aggregates is the key factor controlling the conversion process. Once the giant hybrid amphiphiles were formed, they immediately assembled into kinetically favored vesicular aggregates. During subsequent annealing these vesicular aggregates were transformed into thermodynamically stable vesicular aggregates with a perfect vesicle structure. The success in the preparation of the POM-containing hybrid vesicles provides us with an opportunity of preparing POM-functionalized vesicles.  相似文献   

15.
The self-assembly of cationic and anionic amphiphile mixtures into vesicles in aqueous media was studied using two different systems: (i) decanoic acid and trimethyldecylammonium bromide and (ii) hexadecanedioic acid (a simple bola-amphiphile) and trimethyldecylammonium bromide. The resulting vesicles with varying amphiphile ratios were characterized using parameters such as the critical vesicle concentration, pH sensitivity, and encapsulation efficiency. We also produced and observed giant vesicles from these mixtures using the electroformation method and confocal microscopy. The mixed catanionic vesicles were shown to be more stable than those formed by pure fatty acids. Those containing bola-amphiphile even showed the encapsulation of a small hydrophilic solute (8-hydroxypyrene-1,3,6-trisulfonic-acid), suggesting a denser packing of the amphiphiles. Compression and kinetics analysis of monolayers composed of these amphiphiles mixtures at the air/water interface suggests that the stabilization of the structures can be attributed to two main interactions between headgroups, predominantly the formation of hydrogen bonds between protonated and deprotonated acids and the additional electrostatic interactions between ammonium and acid headgroups.  相似文献   

16.
合成了含有识别基团苯硼酸和荧光基团萘的新型对-[(5-十二烷氧基-1-氧基)萘]甲基苯硼酸{p-[(5-dodecyloxy-1-oxy) naphthalene] methyl-phenylboronic acid, DNMPBA}双亲化合物; 该化合物在THF/水选择性溶剂中自组织成囊泡, 囊泡的相变温度为56.8 ℃; 当向囊泡体系加糖时, DNMPBA囊泡中的萘生色基在345 nm的荧光峰强度急剧增强; 荧光强度随添加不同糖的变化趋势为果糖>葡萄糖>麦芽糖>乙二醇. 荧光强度增强可能归因于所形成的硼酸酯减弱了DNMPBA双亲化合物中一个氧原子孤对电子对萘生色基的猝灭作用而使荧光强度重新恢复. DNMPBA囊泡与糖的相互作用导致体系荧光强度变化, 使该体系有可能应用于检测生物物质如糖的化学传感器.  相似文献   

17.
Results obtained from recent studies on the preparation and application of fatty acid vesicles are reviewed, focusing on some of the particular properties of fatty acid vesicles in comparison with conventional phospholipid vesicles (liposomes): (i) pH dependency which allows reversible transformations from non-vesicular to vesicular aggregates, and (ii) dynamic features that place fatty acid vesicles in between conventional vesicles formed from double-chain amphiphiles and micelles formed from single-chain surfactants. There are two main research areas in which fatty acid vesicles have been studied actively during the last years: (i) basic physico-chemical properties, and (ii) applications as protocell models. Applications of fatty acid vesicles in the fields of food additives and drug delivery are largely unexplored, which is at least partially due to concerns regarding the colloidal stability of fatty acid vesicles (pH- and divalent cation-sensitivity). Recently, fatty acid vesicles were prepared from highly unsaturated fatty acids (docosahexaenoic acid) and the pH range of vesicle formation could be extended to high or low pH values by preparing mixed vesicles through addition of a second type of single-chain amphiphile that stabilizes the vesicle bilayer but itself is not a fatty acid.  相似文献   

18.
We report our findings on the macromolecule-to-amphiphile conversion process of a polyoxometalate–polymer hybrid and the assembled hybrid vesicles formed by aggregation of the hybrid amphiphile. The polyoxometalate–polymer hybrid is composed of a polyoxometalate (POM) cluster, which is covered by five tetrabutylammonium (Bu4N+) countercations, and a polystyrene (PS) chain. Through a cation-exchange process the Bu4N+ countercations can be replaced by protons to form a hybrid amphiphile composed of a hydrophilic, protonated POM cluster and a hydrophobic PS chain. By implementing a directed one-dimensional diffusion and analyzing the diffusion data, we confirmed that the diffusion of solvated protons rather than macromolecules or aggregates is the key factor controlling the conversion process. Once the giant hybrid amphiphiles were formed, they immediately assembled into kinetically favored vesicular aggregates. During subsequent annealing these vesicular aggregates were transformed into thermodynamically stable vesicular aggregates with a perfect vesicle structure. The success in the preparation of the POM-containing hybrid vesicles provides us with an opportunity of preparing POM-functionalized vesicles.  相似文献   

19.
Prof. Dr. Xia Guo  Bo Cui 《中国化学》2010,28(11):2130-2136
Recently, we reported for the first time that oligonucleotide could induce single‐chained cationic surfactant molecules to aggregate into vesicles and the facilitative efficiency of oligonucleotide on vesicle formation was dependent on its size and sequence. In the present paper, we will continue to study the effects of acid and base on the facilitative efficiency of oligonucleotide on vesicle formation. It is found that proton ions show little effect on the facilitative efficiency while hydroxide ions make it decreased. Moreover, the percentage of oligonucleotide involved in vesicle formation in basic solution is much lower than that in acidic solution (which is almost equal to that in water). Since the structures and properties of DNA/amphiphile complex are very important for its application as nonviral gene carrier, this study may provide some helpful information for gene therapy.  相似文献   

20.
利用合成的含有识别基团苯硼酸和荧光读出基团喹啉的新型双亲化合物对硼酸苯甲基-8-十六烷氧基溴化喹啉(BHQB)在水中自组织成囊泡,囊泡的相变温度为52.4℃;当向囊泡体系加糖时,BHQB囊泡中的喹啉生色基在508nm的荧光峰强度急剧减弱,425nm处荧光逐渐增强.荧光强度变化可能归于所形成的硼酸酯改变了双亲化合物中硼原子的杂化轨道形式,进一步引起了整个分子内部的电子云排布所致.BHQB囊泡与糖的相互作用而导致体系荧光强度变化,并且这种变化的幅度与加入糖的种类和量均有关.因此体系有可能应用于检测生物物质如糖的化学传感器.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号