首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A systematic study of the aggregation behavior of alkyltriphenylphosphonium bromides (TPPB-n; n=8, 10, 12, 14, 16, 18; here n is the number of carbon atoms in alkyl groups) in aqueous solutions has been carried out and compared with trimethyl ammonium bromides (TMAB-n). Critical micelle concentrations (cmcs) of TPPB-n and TMAB-n decrease with the number of carbon atoms with the slope parameter of ca.0.3. The low cmcs and effective solubilization power toward Orange OT indicate high micellization capacity of phosphonium surfactants. The low counterion binding parameter β is revealed for TPPB-10 and TPPB-12, while high counterion binding of ≥80% is observed for high TPPB-n homologs. Values of the surface potential ψ calculated on the basis of pK(a) shifts of p-nitrophenols is similar for both series and monotonously increase with alkyl chain length. Several points indicate non-monotonic changes within TPPB-n series. There are peculiarities of the tensiometry and solubilization plots for high homologs and above mentioned increases in counterion binding on transiting from low to high molecular weight surfactants. Differences in aggregation behavior between TPPB and TMAB series and between low and high homologs can be due to the specific structural character of the TPP(+) cation, which is supported by X-ray data.  相似文献   

2.
Aliphatic alcohol ethoxylates are nonionic surfactants which are incorporated in many industrial formulations as complex mixtures of alkyl homologs and ethylene oxide oligomers. Determination of both the homolog and oligomer distributions is required for product control. The proposed method consisted of three reversed-phase liquid chromatographic separation steps carried out on the same C18-bonded silica column. The first step was a preparative one: the sample mixture was fractionated according to the alkyl chain length without discrimination between ethylene oxide oligomers by using methanol-water eluent. The even homologs (EH) were collected together in a single fraction, the odd homologs (OH) in another. In the second and third steps, respectively, EH and OH fractions were separated according to the alkyl chain length and the number of ethylene oxide units simultaneously by changing the mobile phase composition to acetonitrile-water and by using evaporative light scattering detection.  相似文献   

3.
Chimeric RNA oligonucleotides with an artificial triazole linker were synthesized using solution‐phase click chemistry and solid‐phase automated synthesis. Scalable synthesis methods for jointing units for the chimeric structure have been developed, and after click‐coupling of the jointing units with triazole linkers, a series of chimeric oligonucleotides was prepared by utilizing the well‐established phosphoramidite method for the elongation. The series of chimeric 21‐mer oligonucleotides that possessed the triazole linker at different strands and positions allowed for a screening study of the RNA interference to clarify the preference of the triazole modifications in small‐interfering RNA molecules.  相似文献   

4.
Biosurfactants made by fermentation from renewable resources provide “environmental friendly” processes and products. A natural sophorolipid mixture was produced by the yeast Candida bombicola when cultured on glucose and oleic acid. The sophorolipid mixture was chemically modified to form the corresponding sophorolipid alkyl (methyl, ethyl, propyl, and butyl) esters by reaction with the corresponding sodium alkoxides. Interfacial properties of these surfactants, such as surface tension reduction, aggregation, and adsorption, were systematically studied. It was found that the critical micelle concentration of sophorolipid esters decreases to about 1/2 per additional one CH2 group to the alkyl ester moiety. Interestingly, these surfactants were found to adsorb strongly on alumina but weakly on silica. They have properties that make them attractive candidates for uses in detergents, cosmetics, soil remediation, and enhanced oil recovery.  相似文献   

5.
The standard enthalpy of formation of novel chemical species — crystalline cationic surfactant molecular complexes — was studied to elucidate the bonding nature, serially scanning over the different surfactant chain-length homologs and various additive species. The enthalpy was not large, but was obviously dependent on the surfactant chain length and the chemical nature of the additive species. The typical complexes comprising long alkyl chain surfactants were formed endothermally, while in short alkyl chain homologs the process was exothermic. By examining the thermal aspect, it was suggested that the typical complexes of long alkyl-chain surfactants were derived not from attractive energetic force factors, but rather from entropic factors associated with the occurrence of severe disorder caused by heavy thermal agitation in the complex crystalline state.  相似文献   

6.
A new pyridine-based bidentate ligand L (PyC18) was used to develop copper-containing surfactants that exhibit mesomorphism. Complexes [(L (PyC18)) 2Cu (II)Y]Y were synthesized, where Y is an anionic ligand bromo ( 1), nitrato ( 2), or perchlorato ( 3). The nature of these apical ligands determines the mesogenic behavior of 1- 3: The smallest bromo-substituted species 1 shows a metastable liquid crystalline phase at 110 degrees C, the nitrato-substituted 2 increases the transition temperature to 136 degrees C, and the bulky perchlorato-substituted 3 shows reversible mesophases at 153 degrees C. The behavior of these complexes shows similarities and suggests that at low temperatures the crystals of these compounds are bilayered structures with interdigitated alkyl tails. At higher temperatures the tails undergo rapid conformational changes that force these layers to swell until the opposing alkyl chains are separated from each other, and the mesophase is a monolayer smectic A. Small changes in the geometry of cationic mesogens can be imposed by the presence of apically coordinated anions, allowing for tuning in the properties of the resulting mesophases.  相似文献   

7.
To shed light on intramolecular charge‐transfer phenomena in 1,2,3‐triazole‐linked materials, a series of 1,2,3‐triazole‐linked push–pull chromophores were prepared and studied experimentally and computationally. Investigated modifications include variation of donor and/or acceptor strength and linker moiety as well as regioisomers. Photophysical characterization of intramolecular charge‐transfer features revealed ambipolar behavior of the triazole linker, depending on the substitution position. Furthermore, non‐centrosymmetric materials were subjected to second‐harmonic generation measurements, which revealed the high nonlinear optical activity of this class of materials.  相似文献   

8.
We studied decarboxylation of 6-nitrobenzisoxazole-3-carboxylate, 1, as a kinetic probe to investigate microinterface properties of aqueous micelles formed by cationic surfactants of increasing head group bulk, i.e., cetyltrialkylammonium bromide, with alkyl=Me (CTABr), Et (CTEABr), n-Pr (CTPABr), n-Bu (CTBABr) and p-octyloxybenzyltrialkylammonium bromide surfactants with alkyl=Me (pOOTABr), n-Pr (pOOTPABr), and n-Bu (pOOTBABr), and the longer p-dodecyloxybenzyltrimethylammonium bromide (pDoTABr) at concentrations higher than 0.05 M. The pseudophase kinetic treatment fails to fit the data that show anomalies with abrupt increases in k(obs) for CTPABr and CTBABr (but not for CTEABr) and with smooth and continuos increase of k(obs) for all p-alkyloxybenzyltrilakylammonium bromides. Abrupt and successive modifications of the micellar interface properties, undergoing only when the polar head or the alkyl chain have some covalent structure, account for the observed kinetic behavior.  相似文献   

9.
Catanionic surfactants formed by the pairing of two ionic amphiphilic chains of opposite charge are now recognized as an important class of amphiphiles. Many aspects of their phase behavior have yet to be explored. In this work, two homologous series of catanionic surfactants were synthesized, based on the cationic headgroups trimethylammonium and pyridinium. Within each series, the headgroup and chain length of the cationic counterpart remains constant while for the anionic counterpart the headgroup is varied, while its alkyl chain length is also kept constant. Thus, one can directly monitor the influence of headgroup chemistry on the thermal behavior of these compounds. Differential scanning calorimetry (DSC) and polarizing light microscopy show that these compounds bear a rich and often complex thermotropic behavior, with the headgroup chemistry in some instances having a rather dramatic influence on phase behavior. Several liquid crystalline phases appear between the solid crystalline phase and the isotropic liquid phase. A qualitative correlation between the observed thermotropic behavior and the chemical nature of headgroup is presented.  相似文献   

10.
The physicochemical properties of a homologous series of sodium p-n-alkylbenzoates have been investigated. The objective was to determine whether there is a clear transition point from hydrotropic to surfactant-like behavior with increasing alkyl chain length n, so as to shed clear light on the aggregation mechanism of so-called "hydrotropes". Electrical conductivity measurements were used for a first estimation of the critical aggregation concentrations (cac). As for classical surfactants, log(cac) depends on alkyl chain length n, but two branches of behavior were observed: one having a gradient typical of long chain fatty acid salts and the other with a more shallow dependence. Surface tension (γ) measurements of high purity aqueous solutions were used to generate limiting headgroup areas A(cac), which were in the range (40-50 ?(2)) being consistent with monolayer formation. Small-angle neutron scattering conclusively shows that the lower chain length homologues (classed as hydrotropes) exhibit sharp transitions in aggregation as a function of bulk concentration, typical of regular surfactants. As such, there is little to suggest from this study that hydrotropes differ in association behavior from regular surfactants.  相似文献   

11.
Microemulsions of nonionic alkyl oligoethyleneoxide (CiEj) surfactants, alkanes, and ethylammonium nitrate (EAN), a room-temperature ionic liquid, have been prepared and characterized. Studies of phase behavior reveal that EAN microemulsions have many features in common with corresponding aqueous systems, the primary difference being that higher surfactant concentrations and longer surfactant tailgroups are required to offset the decreased solvophobicity the surfactant molecules in EAN compared with water. The response of the EAN microemulsions to variation in the length of the alkane, surfactant headgroup, and surfactant tailgroup has been found to parallel that observed in aqueous systems in most instances. EAN microemulsions exhibit a single broad small-angle X-ray scattering peak, like aqueous systems. These are well described by the Teubner-Strey model. A lamellar phase was also observed for surfactants with longer tails at lower temperatures. The scattering peaks of both microemulsion and lamellar phases move to lower wave vector on increasing temperature. This is ascribed to a decrease in the interfacial area of the surfactant layer. Phase behavior, small-angle X-ray scattering, and conductivity experiments have allowed the weakly to strongly structured transition to be identified for EAN systems.  相似文献   

12.
正、负离子表面活性剂混合体系溶致液晶生成的相行为   总被引:1,自引:0,他引:1  
研究了烷基(C8,C12,C14)三甲基溴化铵、烷基(C12,C14)溴化吡啶与烷基(C8,C12)硫酸钠混合体系溶致液晶形成的条件与结构的变化.在高浓度的水溶液中,随着正、负离子表面活性剂摩尔比接近于1,液晶结构由六角相过渡为层状相.表面活性剂非极性链长改变,对相行为影响显著,短碳链的正、负离子表面活性剂混合体系,在等摩尔比时,体系为层状液晶或立方液晶为主,夹杂少许沉淀.随碳链增长,两类表面活性剂间的静电吸引效果表现为生成沉淀的摩尔比例范围变宽,沉淀量增多,共存的液晶相减少,甚至消失.若只改变正离子的极性头基,季胺盐比吡啶盐与烷基硫酸盐的作用要强,形成不溶物的混合摩尔比例范围更宽.  相似文献   

13.
通过Menshutkin反应合成聚(对亚二甲苯基-4,4'-联吡啶二溴)(PXV)半刚性链聚紫精,采用等量混合法将聚紫精与系列不同碳链长度的阴离子表面活性剂脂肪酸钠Cn-1COONa(n=10,12,14,16,18)组装制备聚电解质-表面活性剂(PXV-Cn)复合物,运用DSC,TGA,XRD,FTIR等表征手段初步考察复合物的超分子结构及相行为.基于FTIR谱学分析特征、小角与广角变温XRD数据以及DSC热分析焓变的定量计算结果,表明半刚性主链聚紫精和脂肪酸盐极性头基组成的极性层与侧链烷烃非极性层交替排列形成层状超分子结构,其中烷烃链靠近极性端约8个亚甲基处于无定型态,其余碳链则形成结晶相.最短的PXV-C10形成少量规整度较低的三斜晶βT,n≥16以上的长碳链复合物则以六方相αH为主,其它中等长度侧链脂肪酸盐复合物则为多种结晶形式共存.随着碳链长度n的增加,侧链结晶熔点Tm升高,n≥16的长碳链复合物表现出随温度变化的可逆结晶相态变化.且这类聚紫精-表面活性剂复合物表现出高于200℃的热稳定性.  相似文献   

14.
In this work, for the first time, the Hydrophilic-Lipophilic Difference (HLD) framework for microemulsion formulation has been applied to silicone oils and silicone alkyl polyether surfactants. Based on the HLD equations and recently introduced mixing rules, we have quantified the hydrophobicity of the oils according to the equivalent alkane carbon number (EACN). We have found that, in a reference system containing sodium dihexyl sulfosuccinate (SDHS) as the surfactant, 0.65 centistoke (cSt) and 3.0 cSt silicone oils behave like n-dodecane and n-pentadecane, respectively. Silicone alkyl polyether surfactants were found to have characteristic curvatures ranging 3.4-18.9, exceeding that of most non-ionic surfactants. The introduction of methacrylic acid (MAA) and hydroxyethyl methacrylate (HEMA) to the aqueous phase caused a significant negative shift in HLD, indicative of an aqueous phase that is less hydrophilic than pure water. The more hydrophobic surfactants (largest positive curvatures) were used in order to compensate for this effect. These findings have led to the formulation of bicontinuous microemulsions (μEs) containing silicone oil, silicone alkyl polyether and reactive monomers in aqueous solution. Ternary phase diagrams of these systems revealed the potential for silicone-containing polymer composites with bicontinuous morphologies. These findings have also helped to explain the phase behavior of formulations previously reported in literature, and could help in providing a systematic, consistent approach to future silicone oil based microemulsion formulation.  相似文献   

15.
Monoquaternary cationic polymerizable surfactants of type N‐acryloyl‐N′‐methyl‐N′‐alkyl piperazinium bromide based on piperazine heterocycle was synthesized by reacting N‐acryloyl‐N′methyl piperazine with the corresponding n‐alkyl bromide (decyl, dodecyl, tetradecyl, and hexadecyl) in anhydrous acetone at room temperature. The resulting surfactants were deliquescent to display any sharp melting points. The surface activity was studied by surface tension measurements. Due to the complex head group geometry of these surfactants, the critical micelle concentration value was high in comparison to the analogous alkyltrimethyl ammonium bromides of similar alkyl chain length. The surfactants were polymerized by micellar (in water) and isotropic (in benzene) conditions and the resulting polymers were characterized by solubility and viscosity studies. The polymers prepared in water showed higher viscosity than the ones prepared in benzene as a result of micellar aggregation in water. The reduced viscosity of the polymers in polar solvents such as methanol and dimethyl formamide (DMF) showed polyelectrolyte‐like behavior, whereas nonelectrolyte behavior was observed in chloroform. pH‐responsive hydrogels were prepared by polymerizing the surfactants in the bicontinuous phase of a microemulsion. The resulting polymers did not exhibit any definite micro/nanostructure due to cross‐polymerization of the hydrophilic oil in the bicontinuous network structure. The gels were highly responsive to changes in pH of the medium and showed high‐swelling degree in acidic media owing to the protonation of the tertiary nitrogen of the piperazine ring. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2059–2072, 2009  相似文献   

16.
New functional thermoreversible metal complexing surfactants consisting of a chelating amino acid residue grafted to the tip of a nonionic surfactant [alkyl poly(oxyethylene) CiEj] or in a branched position are studied. Nonionic surfactants are thermoreversible and exhibit a clouding phenomenon associated with phase separation of micelles. The functional molecules retain both the surface-active properties and the characteristic thermoreversible behavior. Because of the hydrophilic contribution of the chelating group (acetyl lysine), the cloud point and the area at the air-water interface are higher for functional surfactants than for nonionic precursors. These new surfactants have efficient complexing properties toward metal ions and are more efficient than the mixture of the corresponding nonionic surfactant and the acetyl lysine ligand solubilized in micelles. This reveals the synergistic effect obtained by the covalent link between the two functions. Addition of a bulky group on classical amphiphilic structures modifies markedly the packing constraints at the origin ofmicellar structures. Small-angle X-ray or neutron scattering results, modeled jointly on the absolute scale, demonstrate the influence of unrecognized lithium nitrate (LiNO3) as well as specifically recognized uranyl nitrate [UO2(NO3)2] salts on micellar structure and phase boundaries. The determination of the micellar shape variations induced by a recognized salt, that is, a decrease of the polar headgroup, allows the rationalization of uncommon synergistic effects on the cloud point variation: increase with lithium nitrate, no decrease in the presence of uranyl nitrate, and a very large decrease when these two salts are present together.  相似文献   

17.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

18.
A series of long and ultralong chain tetrabutylammonium alkyl carboxylate (TBACm, TBA = tetrabutylammonium ion; Cm = carboxylate ion C(m-1)H(2)(m-1)CO(2)(-) of total carbon number m) surfactants have been obtained by direct neutralization of the fatty acids with m = 12, 14, 18, 22, and 24 by tetrabutylammonium hydroxide. Time-resolved fluorescence quenching has been used to determine the micelle aggregation number (N) of the surfactants with m = 12, 14, and 18 in the temperature range 10-50 degrees C and of the surfactants with m = 22 and 24 in the temperature range 25-60 degrees C. In all instances the values of N were well below those that can be calculated for the maximum spherical micelle formed by surfactants with the same alkyl chain as the investigated surfactants on the basis of the oil drop model for the micelle core. The microstructure of selected solutions of TBAC22 was examined using transmission electron microscopy at cryogenic temperature and compared to the microstructure of solutions of TBA dodecyl and tetradecyl sulfates. These observations generally confirmed the findings of TRFQ. The self-association behavior of these anionic surfactants with TBA counterions is explained on the basis of the large size and the hydrophobicity of the tetrabutylammonium ions. The important differences in behavior that have been evidenced between tetrabutylammonium alkyl carboxylates and alkyl sulfates are discussed in terms of differences in distribution of the surfactant electrical charge on the headgroup and alkyl chain predicted by quantum chemical calculations (Langmuir 1999, 15, 7546).  相似文献   

19.
A new generation of nonionic surfactants that are widely applicable and simultaneously ecologically compatible has been developed in the alkyl polyglycosides. Their production from the renewable resources glucose and fatty alcohol and their ultimate biodegradation into carbon dioxide, water, and assimilated bacterial biomass is an example for a closed cycle. As a result of their physico-chemical properties and ecotoxicological evaluation, they have become very important as high-performance components of detergents and cosmetic preparations.  相似文献   

20.
Dodecanoyl amidoalkylguanidine hydrochlorides (C(12)A(m)G, m = 2, 3, 4, 6) are cationic surfactants that have an amidoalkyl group (A(m)) as spacer between the cationic guanidine and hydrophobic groups in the molecule. The effect of the A(m) group on the aggregation properties of the surfactants was evaluated through measurements of their critical micelle concentration (cmc) value, Krafft point, phase behavior, area occupied by one molecule at the air/water interface, and micellar aggregation number. Dodecylguanidine hydrochloride (C(12)A(0)G) with no A(m) group is a unique cationic surfactant because it exhibits a strong tendency for self-assembly when compared with common ionic surfactants, due to the hydrogen bonding between its guanidine groups in addition to the hydrophobic interaction between its alkyl chains [M. Miyake, K. Yamada, N. Oyama, Langmuir 24 (2008) 8527-8532]. In contrast, C(12)A(m)G showed a decreasing tendency for self-assembly with increasing alkyl chain length, m, of the A(m) group up to m = 3, above which the tendency increased. Such changes in aggregation tendency of the surfactants were suggested to arise from an increased bulkiness of the hydrophilic part caused by the A(m) group, resulting in a decrease in the hydrogen bonding between the guanidine groups and an increase in micellization through the cooperative hydrophobic interaction between the hydrophilic groups. From the balance of these effects, the area of the hydrophilic part of C(12)A(4)G was the largest and the hydrogen bonding between the guanidine groups in C(12)A(4)G was weakened. It is suggested in guanidine-type surfactant that A(4) gave a similar aggregation tendency to traditional ionic surfactants and a weak effect for skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号