首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

The 13C stable isotopic composition of 38 pharmaceutical products was investigated for six medicine analgesics classes ibuprofen, diclofenac, paracetamol, metamizole, ketoprofene, and combinations containing paracetamol to evaluate differences between manufacturers and production batches. Complementary measurements were performed by inductively coupled plasma-mass spectrometry. Linear discriminant analysis was applied on experimental obtained data set for differentiation of three investigated drug types. The carbon isotopic compositions were between ?32.9 and ?22.6‰. The lowest values of 13C (mean of ?31.3‰) were obtained for metamizole from all six categories of investigated analgesics. The highest δ13C values were obtained for diclofenac (mean of ?25.9‰). The most accurate elemental predictors were V, Al, Sb, As, Pb, and Mn.  相似文献   

2.
Carbon isotope analysis by bulk elemental analysis coupled with isotope ratio mass spectrometry has been the mainstay of δ13C analyses both at natural abundance and in tracer studies. More recently, compound‐specific isotope analysis (CSIA) has become established, whereby organic constituents are separated online by gas or liquid chromatography before oxidation and analysis of CO2 for constituent δ13C. Theoretically, there should be concordance between bulk δ13C measurements and carbon‐weighted δ13C measurements of carbon‐containing constituents. To test the concordance between the bulk and CSIA, fish oil was chosen because the majority of carbon in fish oil is in the triacylglycerol form and ~95% of this carbon is amenable to CSIA in the form of fatty acids. Bulk isotope analysis was carried out on aliquots of oil extracted from 55 fish samples and δ13C values were obtained. Free fatty acids (FFAs) were produced from the oil samples by saponification and derivatised to fatty acid methyl esters (FAMEs) for CSIA by gas chromatography/combustion/isotope ratio mass spectrometry. A known amount of an internal standard (C15:0 FAME) was added to allow analyte quantitation. This internal standard was also isotopically calibrated in both its FFA (δ13C = ?34.30‰) and FAME (δ13C = ?34.94‰) form. This allowed reporting of FFA δ13C from measured FAME δ13C values. The bulk δ13C was reconstructed from CSIA data based on each FFA δ13C and the relative amount of CO2 produced by each analyte. The measured bulk mean δ13C (SD) was ?23.75‰ (1.57‰) compared with the reconstructed bulk mean δ13C of ?23.76 (1.44‰) from CSIA and was not significantly different. Further analysis of the data by the Bland‐Altman method did not show particular bias in the data relative to the magnitude of the measurement. Good agreement between the methods was observed with the mean difference between methods (range) of 0.01‰ (?1.50 to 1.30). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (δ13C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of δ13C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of δ13C of these upland soils mainly reflect decomposition of SOC. Long‐term disturbance of an upland soil is indicated by decreasing correlation of δ13C and SOC (r ≤ 0.80) which goes in parallel with increasing (visible) damage at the site. Early stage soil erosion in hill slope transects from uplands to adjacent wetlands is documented as an intermediate δ13C value (?27.5‰) for affected wetland soil horizons (0–12 cm) between upland (aerobic metabolism, relatively heavier δ13C of ?26.6‰) and wetland isotopic signatures (anaerobic metabolism, relatively lighter δ13C of ?28.6‰). Carbon isotopic signature and SOC content are found to be sensitive indicators of short‐ and long‐term soil erosion processes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
An online method using continuous flow isotope ratio mass spectrometry (CF‐IRMS) interfaced with a Gasbench II device was established to analyze carbon and oxygen isotopic compositions and to estimate the content of minor amounts of carbonate in silicate rocks. The mixtures of standard materials and high‐purity quartz are firstly used to calibrate different quantities of carbonate in silicates. The results suggest that the accuracy and precision of the online analysis are both better than those obtained using an offline method. There is a positive correlation between the carbonate weight and the Mass44 ion beam intensity (or peak area). When the weight of carbonate in the mixtures is greater than 70 µg (equal to ~1800 mV Mass44 ion beam intensity), the δ13C and δ18O values of samples usually have accuracy and precision of ±0.1‰ and ±0.2‰ (1σ), respectively. If the weight is less than 70 µg, some limitations (e.g., not perfectly linear) are encountered that significantly reduce the accuracy and precision. The measured δ18O values are systematically lower than the true values by ?0.3 to ?0.7‰; the lower the carbonate content, the lower the measured δ18O value. For samples with lower carbonate content, the required phosphoric acid doses are higher and more oxygen isotope exchanges with the water in the phosphoric acid. To guarantee accurate results with high precision, multiple analyses of in‐house standards and an artificial MERCK sample with δ13C values from ?35.58 to 1.61‰ and δ18O from 6.04 to 18.96‰ were analyzed simultaneously with the unknown sample. This enables correction of the measured raw data for the natural sample based on multiple‐point normalization. The results indicate that the method can be successfully applied to a range of natural rocks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Isoprene is one of the most important non‐methane hydrocarbons (NMHCs) in the troposphere: it is a significant precursor of O3 and it affects the oxidative state of the atmosphere. The diastereoisomeric 2‐methyltetrols, 2‐methylthreitol and 2‐methylerythritol, are marker compounds of the photooxidation products of atmospheric isoprene. In order to obtain valuable information on the δ13C value of isoprene in the atmosphere, the stable carbon isotopic compositions of the 2‐methyltetrols in ambient aerosols were investigated. The 2‐methyltetrols were extracted from filter samples and derivatized with methylboronic acid, and the δ13C values of the methylboronate derivatives were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The δ13C values of the 2‐methyltetrols were then calculated through a simple mass balance equation between the 2‐methyltetrols, methylboronic acid and the methylboronates. The δ13C values of the 2‐methyltetrols in aerosol samples collected at the Changbai Mountain Nature Reserves in eastern China were found to be ?24.66 ± 0.90‰ and ?24.53 ± 1.08‰ for 2‐methylerythritol and 2‐methylthreitol, respectively. Based on the measured isotopic composition of the 2‐methyltetrols, the average δ13C value of atmospheric isoprene is inferred to be close to or slightly heavier than ?24.66‰ at the collection site during the sampling period. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The carbon isotope composition of leaf bulk organic matter was determined on the tropical tree Elaeis guineensis Jacq. (oil palm) in North Sumatra (Indonesia) to get a better understanding of the changes in carbon metabolism during the passage from heterotrophy to autotrophy of the leaves. Leaf soluble sugar (sucrose, glucose and fructose) contents, stomatal conductance and dark respiration, as well as leaf chlorophyll and nitrogen contents, were also investigated. Different growing stages were sampled from leaf rank ?6 to rank 57. The mean values for the δ13C of bulk organic matter were ?29.01 ± 0.9‰ for the leaflets during the autotrophic stage, ?27.87 ± 1.08‰ for the petioles and ?28.17 ± 1.09‰ for the rachises, which are in the range of expected values for a C3 plant. The differences in δ13C among leaf ranks clearly revealed the changes in the origin of the carbon source used for leaf growth. Leaves were 13C‐enriched at ranks below zero (around ?27‰). During this period, the ‘spear’ leaves were completely heterotrophic and reserves from storage organs were mobilised for the growth of these young emerging leaves. 13C‐depletion was then observed when the leaf was expanding at rank 1, and there was a continuous decrease during the progressive passage from heterotrophy until reaching full autotrophy. Thereafter, the δ13C remained more or less constant at around ?29.5‰. Changes in sugar content and in δ13C related to leaf ranks showed an interesting similarity of the passage from heterotrophy to autotrophy of oil palm leaves to the budburst of some temperate trees or seed germination reported in the literature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Stable isotopes of water have been previously used in catchment studies to separate rain‐event water from pre‐event groundwater. However, there are a lack of studies at the smaller scale looking at the separation of event water from pre‐event water. This is particularly relevant for heavy clay soil systems through which the movement of water is uncertain but is thought to be rainwater‐dominated. The data presented here were collected at a rural site in the south‐west of England. The historic rainfall at the site was isotopically varied but similar to the global meteoric water line, with annual weighted means of ?37‰ for δ2H and ?5.7‰ for δ18O and with no seasonal variation. Drainage was sampled from the inter‐flow (surface runoff + lateral through‐flow) and drain‐flow (55 cm deep mole drains) pathways of two 1 ha lysimeters during two rainfall events, which had δ2H values of ?68‰ and ?92‰, respectively. The δ2H values of the lysimeter drainage water suggest that there was no contribution of event water during the first, small discharge (Q) event; however, the second larger event did show isotopic variation in δ2H values negatively related to Q indicating that rainwater was contributing to Q. A hydrograph separation indicated that only 49–58% of the inter‐flow and 18–25% of the drain‐flow consisted of event water. This was surprising given that these soil types are considered retentive of soil water. More work is needed on heavy clay soils to understand better the nature of water movement from these systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the δ values of these reference materials should bracket the isotopic range of samples with unknown δ values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW‐SLAP) and carbonates (NBS 19 and L‐SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA‐IRMS). At present only L‐glutamic acids USGS40 and USGS41 satisfy these requirements for δ13C and δ15N, with the limitation that L‐glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on‐line (i.e. continuous flow) hydrogen reductive gas chromatography‐isotope ratio mass‐spectrometry (GC‐IRMS), (ii) five nicotines for oxidative C, N gas chromatography‐combustion‐isotope ratio mass‐spectrometry (GC‐C‐IRMS, or GC‐IRMS), and (iii) also three acetanilide and three urea reference materials for on‐line oxidative EA‐IRMS for C and N. Isotopic off‐line calibration against international stable isotope measurement standards at Indiana University adhered to the ‘principle of identical treatment’. The new reference materials cover the following isotopic ranges: δ2Hnicotine ?162 to ?45‰, δ13Cnicotine ?30.05 to +7.72‰, δ15Nnicotine ?6.03 to +33.62‰; δ15Nacetanilide +1.18 to +40.57‰; δ13Curea ?34.13 to +11.71‰, δ15Nurea +0.26 to +40.61‰ (recommended δ values refer to calibration with NBS 19, L‐SVEC, IAEA‐N‐1, and IAEA‐N‐2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC‐IRMS that are available with different δ15N values. Comparative δ13C and δ15N on‐line EA‐IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA‐IRMS reference materials. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

9.
Squalene and its hydrogenated derivate squalane are widely used in the pharmaceutical and cosmetic fields. The two compounds are mainly produced from the liver oil of deep sea sharks and from olive oil distillates. Squalene and squalane from shark cost less than the same compounds derived from olive oil, and the use of these shark‐derived compounds is unethical in cosmetic formulations. In this work we investigate whether 13C/12C and 2H/1H ratios can distinguish olive oil from shark squalene/squalane and can detect the presence of shark derivates in olive oil based products. The 13C/12C ratios (expressed as δ13C values) of bulk samples and of pure compounds measured using isotope ratio mass spectrometry (IRMS) were significantly lower in authentic olive oil squalene/squalane (N: 13; ?28.4 ± 0.5‰; ?28.3 ± 0.8‰) than in shark squalene/squalane samples (N: 15; ?20.5 ± 0.7‰; ?20.4 ± 0.6‰). By defining δ13C threshold values of ?27.4‰ and ?26.6‰ for olive oil bulk and pure squalene/squalane, respectively, illegal addition of shark products can be identified starting from a minimum of 10%. 2H/1H analysis is not useful for distinguishing the two different origins. δ13C analysis is proposed as a suitable tool for detecting the authenticity of commercial olive oil squalene and squalane samples, using IRMS interfaced to an elemental analyser if the purity is higher than 80% and IRMS interfaced to a gas chromatography/combustion system for samples with lower purity, including solutions of squalane extracted from cosmetic products. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In order to generate a reliable and long‐lasting stable isotope ratio standard for CO2 in samples of clean air, CO2 is liberated from well‐characterized carbonate material and mixed with CO2‐free air. For this purpose a dedicated acid reaction and air mixing system (ARAMIS) was designed. In the system, CO2 is generated by a conventional acid digestion of powdered carbonate. Evolved CO2 gas is mixed and equilibrated with a prefabricated gas comprised of N2, O2, Ar, and N2O at close to ambient air concentrations. Distribution into glass flasks is made stepwise in a highly controlled fashion. The isotopic composition, established on automated extraction/measurement systems, varied within very small margins of error appropriate for high‐precision air‐CO2 work (about ±0.015‰ for δ13C and ±0.025‰ for δ18O). To establish a valid δ18O relation to the VPDB scale, the temperature dependence of the reaction between 25 and 47°C has been determined with a high level of precision. Using identical procedures, CO2‐in‐air mixtures were generated from a selection of reference materials; (1) the material defining the VPDB isotope scale (NBS 19, δ13C = +1.95‰ and δ18O = ?2.2‰ exactly); (2) a local calcite similar in isotopic composition to NBS 19 (‘MAR‐J1’, δ13C = +1.97‰ and δ18O = ?2.02‰), and (3) a natural calcite with isotopic compositions closer to atmospheric values (‘OMC‐J1’, δ13C = ?4.24‰ and δ18O = ?8.71‰). To quantitatively control the extent of isotope‐scale contraction in the system during mass spectrometric measurement other available international and local carbonate reference materials (L‐SVEC, IAEA‐CO‐1, IAEA‐CO‐8, CAL‐1 and CAL‐2) were also processed. As a further control pure CO2 reference gases (Narcis I and II, NIST‐RM 8563, GS19 and GS20) were mixed with CO2‐free synthetic air. Independently, the pure CO2 gases were measured on the dual inlet systems of the same mass spectrometers. The isotopic record of a large number of independent batches prepared over the course of several months is presented. In addition, the relationship with other implementations of the VPDB‐scale for CO2‐in‐air (e.g. CG‐99, based on calibration of pure CO2 gas) has been carefully established. The systematic high‐precision comparison of secondary carbonate and CO2 reference materials covering a wide range in isotopic composition revealed that assigned δ‐values may be (slightly) in error. Measurements in this work deviate systematically from assigned values, roughly scaling with isotopic distance from NBS 19. This finding indicates that a scale contraction effect could have biased the consensus results. The observation also underlines the importance of cross‐contamination errors for high‐precision isotope ratio measurements. As a result of the experiments, a new standard reference material (SRM), which consists of two 5‐L glass flasks containing air at 1.6 bar and the CO2 evolved from two different carbonate materials, is available for distribution. These ‘J‐RAS’ SRM flasks (‘Jena‐Reference Air Set’) are designed to serve as a high‐precision link to VPDB for improving inter‐laboratory comparability. a Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Published datasets of proteinaceous animal tissues suggest that co‐variation between amino acid hydrogen (δ2H) and oxygen (δ18O) isotope ratios is a common feature in systems where isotopic variation is driven by geographic or temporal variation in the δ2H and δ18O values of environmental water. This has led to the development of models relating tissue δ2H and δ18O values to those of water, with potential application in a number of fields. However, the strength and ubiquity of the influence of environmental water on protein isotope ratios across taxonomic groups, and thus the relevance of predictive models, is an open question. Here we report strong co‐variation of δ2H and δ18O values across a suite of terrestrial and aquatic animal meats purchased in American food markets, including beef, poultry (chicken and turkey), chicken eggs, pork, lamb, freshwater fish, and marine fish. Significant isotope co‐variation was not found for small collections of marine bivalves and crustaceans. These results imply that isotopic signals from environmental water were propagated similarly through most of the diverse natural and human‐managed foodwebs represented by our samples. Freshwater fish had the largest variation in δ2H and δ18O values, with ranges of 121 ‰ and 19.2 ‰, respectively, reflecting the large isotopic variation in environmental freshwaters. In contrast marine animals had the smallest variation for both δ2H (7 ‰ range, crustaceans) and δ18O (3.0 ‰ range, bivalves) values. Known‐origin beef samples demonstrated direct relationships between the variance of environmental water isotope ratios and that of collected meats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A new analytical technique is described for the determination of δ34S that is comparable to or better than modern gas source mass spectrometry in precision and accuracy, but requires about a factor of 10 less sample. The technique is based on the production of singularly charged arsenic sulfide molecular ions (AsS+) by thermal ionization using silica gel as an emitter and combines multiple‐collector thermal ionization mass spectrometry (MC‐TIMS) with a 33S‐36S double spike to correct instrumental fractionation. Three international sulfur standards (IAEA‐S‐1, IAEA‐S‐2, and IAEA‐S‐3) were measured to evaluate the precision and accuracy of the new technique and to evaluate the consensus values for these standards. Two different double spike preparations were used. The δ34S values (reported relative to Vienna Canyon Diablo Troilite (VCDT), (δ34S (‰) = ([((34S/32S)sample/(34S/32S)VCDT ? 1) × 1000]), 34S/32SVCDT = 0.0441626) determined were ?0.32 ± 0.04‰ (1σ, n = 4) and ?0.31 ± 0.13‰ (1σ, n = 8) for IAEA‐S‐1, 22.65 ± 0.04‰ (1σ, n = 7) and 22.60 ± 0.06‰ (1σ, n = 5) for IAEA‐S‐2, and ?32.47 ± 0.07‰ (1σ, n = 8) for IAEA‐S‐3. The amount of natural sample used for these analyses ranged from 0.40 to 2.35 µmol. Replicate determinations of each standard showed less than 0.5‰ variability (IAEA‐S‐1 <0.4‰, IAEA‐S‐2 <0.2‰, and IAEA‐S‐3 <0.2‰). Because the technique is based on thermal ionization of AsS+, and As is mononuclidic, corrections for interferences or for scale contraction/expansion are not required. The availability of MC‐TIMS instruments in laboratories around the world makes this technique immediately available to a much larger scientific community who require highly accurate and precise measurements of sulfur. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

13.
The positional δ(18O) values of vanillin ( 1 ) of different origins have been determined from the global values of 2‐methoxy‐4‐methylphenol ( 4 ), obtained from 1 upon Clemensen reduction, and of 3‐methylanisole ( 5 ), obtained from 4 by removal of the phenolic O‐atom. By these means, it is possible to differentiate samples of 1 of synthetic origin from those extracted from Vanilla plants or produced from lignin by chemical oxidation. The main difference between the samples derived from guaiacol and those possessing the aromatic moiety of natural origin is in the enrichment values of the O‐atoms at C(3) and C(4), while the extractive materials from the pods are distinguished from the product from lignin on the basis of the carbonyl oxygen δ(18O) values, ranging from +25.5 and +26.2 in the natural material to +19.7‰ in the lignan‐based sample. The values for the phenolic O‐atom vary from +8.9 and +12‰ of the synthetic materials to +6.5, +5.3, and +6.3‰, respectively, of the sample from lignin and the two samples from Vanilla pods,whereas the MeO O‐atoms show the following values for the same compounds: −2.9, −3.2, +3.5, +3.1, and +2.3‰, respectively. This study indicates the significance of the positional δ(18O) values of polyoxygenated compounds for the definition of their origin.  相似文献   

14.
Plants that absorb silicon may induce isotope fractionation that causes relative abundance changes in biogeochemical processes in organisms and environment. Silicon isotopes (28Si, 29Si, and 30Si) were determined with high precision using multicollector inductively coupled plasma mass spectrometer. In the present study, the silicon isotope composition was determined in maize and corresponding soil was collected from Zhejiang Province, China. The δ30Si values were from ?2.7 to 3.3‰ in the plant tissues. The isotope fractionation between precipitated and dissolved silicon was 0.9976 and the silicon isotope fractionation in the plants was appeared to be Rayleigh-like process. The fractionation factors between the whole plants and the soil–water-soluble fractions were estimated to be 0.9989, indicating the presence of biochemical silicon isotope fractionation. The active uptake of silicon appeared to play an important role through which the heavy silicon isotopes were preferentially absorbed and transferred to the aboveground plant tissues. However, the roles of a passive mechanism for silicon uptake could not be ruled out through which the light silicon isotopes preferentially precipitated in various plant tissues.  相似文献   

15.
Tritium and other stable isotopes in precipitation were analyzed on a monthly based on Jeju Island and in Daejeon Korea and variations between the island and continent were compared. The tritium concentration in Daejeon ranged from 2.27 to 15.71 TU and on Jeju from <0.5 to 5.4 TU. The maximum value of the tritium content was in March and the minimum in July and August due to the dilution effect of heavy rain. The tritium content in precipitation on Jeju Island was lower than in Daejeon and the results reflected the general tritium content value in the Northern Hemisphere. The stable isotope analysis results showed that the mean value of δ 18O (‰) was ?6.28 and ranged from ?11.70 to ?1.67. Further the mean δD (‰) value was ?36.33 and ranged from ?85.56 to 4.27. The mean deuterium excess value (d-value) was 13.89  ‰ and ranged from 3.33 to 33.61 ‰.  相似文献   

16.
The bromine isotope composition is potentially diagnostic in both degradation monitoring and source apportionment of organobromines in the environment. A method for compound‐specific bromine isotope analysis (δ81Br) based on gas chromatography multiple collector inductively coupled plasma mass spectrometry (GC/ICPMS) was developed for common brominated diaromatic compounds. Brominated diphenyl ethers (BDEs) in Bromkal 70‐5DE, a technical flame‐retardant mixture containing mainly BDEs #47, #99 and #100, were used as test substances, with standard bracketing for the samples achieved through co‐injected monobromobenzene (MBB) with a known δ81Br of ?0.39‰ vs. Standard Mean Ocean Bromine (SMOBr). Three different heated transfer lines were constructed and tested to achieve efficient conduction of the BDEs from the gas chromatograph to the ICPMS instrument. The MBB was analyzed with a precision of 0.4‰ (1 s, n = 18). The precision for BDEs was 1.4–1.8‰ (1 s, n = 10–12 depending on the congener). The lower precision for the BDEs than for MBB may reflect the heat required to prevent condensation of the analytes in ICP torch assembly. The use of an internal standard of similar chemical structure to the analytes alleviates this problem, as illustrated by a difference of 0.3 ± 0.7‰ (1 s, n = 6) between the δ81Br values of co‐injected methoxy BDE‐47 and BDE‐47 extracted from whale blubber. Improvements in precision and accuracy may be achieved by the use of a more efficient heating of the torch assembly in conjunction with a set of internal standards that match the target compounds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A method for online simultaneous δ2H and δ18O analysis in water by high‐temperature conversion is presented. Water is injected by using a syringe into a high‐temperature carbon reactor and converted into H2 and CO, which are separated by gas chromatography (GC) and carried by helium to the isotope ratio mass spectrometer for hydrogen and oxygen isotope analysis. A series of experiments was conducted to evaluate several issues such as sample size, temperature and memory effects. The δ2H and δ18O values in multiple water standards changed consistently as the reactor temperature increased from 1150 to 1480°C. The δ18O in water can be measured at a lower temperature (e.g. 1150°C) although the precision was relatively poor at temperatures <1300°C. Memory effects exist for δ2H and δ18O between two waters, and can be reduced (to <1%) with proper measures. The injection of different amounts of water may affect the isotope ratio results. For example, in contrast to small injections (100 nL or less) from small syringes (e.g. 1.2 µL), large injections (1 µL or more) from larger syringes (e.g. 10 µL) with dilution produced asymmetric peaks and shifts of isotope ratios, e.g. 4‰ for δ2H and 0.4‰ for δ18O, probably resulting from isotope fractionation during dilution via the ConFlo interface. This method can be used to analyze nanoliter samples of water (e.g. 30 nL) with good precision of 0.5‰ for δ2H and 0.1‰ for δ18O. This is important for geosciences; for instance, fluid inclusions in ancient minerals may be analyzed for δ2H and δ18O to help understand the formation environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Gas chromatography‐combustion‐isotope ratio mass spectrometry (GC‐C‐IRMS) is increasingly applied to food and metabolic studies for stable isotope analysis (δ13C), with the quantification of analyte concentration often obtained via a second alternative method. We describe a rapid direct transesterification of triacylglycerides (TAGs) for fatty acid methyl ester (FAME) analysis by GC‐C‐IRMS demonstrating robust simultaneous quantification of amount of analyte (mean r2 = 0.99, accuracy ±2% for 37 FAMEs) and δ13C (±0.13‰) in a single analytical run. The maximum FAME yield and optimal δ13C values are obtained by derivatizing with 10% (v/v) acetyl chloride in methanol for 1 h, while lower levels of acetyl chloride and shorter reaction times skewed the δ13C values by as much as 0.80‰. A Bland‐Altman evaluation of the GC‐C‐IRMS measurements resulted in excellent agreement for pure oils (±0.08‰) and oils extracted from French fries (±0.49‰), demonstrating reliable simultaneous quantification of FAME concentration and δ13C values. Thus, we conclude that for studies requiring both the quantification of analyte and δ13C data, such as authentication or metabolic flux studies, GC‐C‐IRMS can be used as the sole analytical method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The stable carbon isotope compositions of tetrols, erythritol and threitol were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using four tetrols with various δ13C values derivatized by methylboronic acid, the carbon isotope analysis method achieved excellent reproducibility and high accuracy. There was no carbon isotopic fractionation during the derivatization processes. The differences in the carbon isotopic compositions of methylboronates between the measured and calculated ranged from ?0.20 to 0.12‰, within the specification of the GC/C/IRMS system. It was demonstrated that δ13C values of tetrols could be calculated by a simple mass balance equation between tetrols, methylboronic acid, and methylboronates. The analogous 2‐methyltetrols, marker compounds of photooxidation products of atmospheric isoprene, should have similar behavior using the same derivatization reagent. This method may provide insight on sources and sinks of atmospheric isoprene. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
High frequency observations of the stable isotopic composition of CO2 effluxes from soil have been sparse due in part to measurement challenges. We have developed an open‐system method that utilizes a flow‐through chamber coupled to a tunable diode laser (TDL) to quantify the rate of soil CO2 efflux and its δ13C and δ18O values (δ13CR and δ18OR, respectively). We tested the method first in the laboratory using an artificial soil test column and then in a semi‐arid woodland. We found that the CO2 efflux rates of 1.2 to 7.3 µmol m?2 s?1 measured by the chamber‐TDL system were similar to measurements made using the chamber and an infrared gas analyzer (IRGA) (R2 = 0.99) and compared well with efflux rates generated from the soil test column (R2 = 0.94). Measured δ13C and δ18O values of CO2 efflux using the chamber‐TDL system at 2 min intervals were not significantly different from source air values across all efflux rates after accounting for diffusive enrichment. Field measurements during drought demonstrated a strong dependency of CO2 efflux and isotopic composition on soil water content. Addition of water to the soil beneath the chamber resulted in average changes of +6.9 µmol m?2 s?1, ?5.0‰, and ?55.0‰ for soil CO2 efflux, δ13CR and δ18OR, respectively. All three variables initiated responses within 2 min of water addition, with peak responses observed within 10 min for isotopes and 20 min for efflux. The observed δ18OR was more enriched than predicted from temperature‐dependent H2O‐CO2 equilibration theory, similar to other recent observations of δ18OR from dry soils (Wingate L, Seibt U, Maseyk K, Ogee J, Almeida P, Yakir D, Pereira JS, Mencuccini M. Global Change Biol. 2008; 14: 2178). The soil chamber coupled with the TDL was found to be an effective method for capturing soil CO2 efflux and its stable isotope composition at high temporal frequency. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号