首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5–5.0, 4.5, 4.0–5.0, 4.0, 5.0 and 5.0–7.0, respectively, and their desorptions by 2 mol L–1 HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g–1 of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL–1. The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD ≤ 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of ~ 3.0%.  相似文献   

2.
The functional group capacity and the percentage of functional group conversion of crosslinked polystyrene resin bearing N-methyl-2-thioimidazole (MTIR) synthesized under optimum conditions are as high as 4.08 mmol/g resin and 96.0%, respectively. The apparent activation energies of sorption of MTIR for Au(III) and Pt(IV) are 13.1 and 13.4 kJ/mol, respectively. The sorption behavior of MTIR for Au(III), Pt(IV), and Pd(II) obeys the Freundlich and Langmuir isotherms. The sorption capacities of MTIR for Au(III), Pt(IV), and Pd(II) are as high as 4.33, 2.12, and 2.33 mmol/g resin, respectively. Au(III), Pt(IV), and Pd(II) adsorbed on MTIR can be eluted quantitatively by the eluant. The resin can be regenerated easily and reused without an obvious decrease in the sorption capacity for Au(III) and Pd(II). The resin has high sorption selectivity for noble metal ions. Au(III) can be separated quantitatively in the presence of high concentrations of Cu2+, Fe3+, Ni2+, and Mn2+. The recovery of platinum from the spent industrial catalysts is 98.6% by MTIR. The preconcentration and separation of palladium and platinum from the anode deposits of electrolysis of crude copper have been investigated. The resin may have potential industrial uses.  相似文献   

3.
A solid phase extraction method for simultaneous preconcentration and separation of trace amounts of copper, cobalt and silver in different samples, using a column packed with modified Amberlyst®15 resin is developed. Amberlyst®15 resin was modified with 5-(4-dimethylaminobenzylidene)rhodanine and then the modified resin was used as a support material for the solid phase extraction and preconcentration of Cu(II), Co(II) and Ag(I) ions from aqueous solution in the pH range 3.5–4.5. The adsorbed metal ions on the column were quantitatively eluted with a 7% thiourea solution prepared in 2?mol?L?1 HNO3, which were detected by flame atomic absorption spectrometry. The effects of analytical parameters including pH of the solution, eluent type, flow rate of samples, eluent and matrix ions were investigated for optimization of the presented procedure. The detection limits were 2.1, 0.9 and 0.9?ng?mL?1 for Cu(II), Co(II) and Ag(I) ions, respectively based on the three times the standard deviations of the blanks. The preconcentration factor was 112.5. The calibration graphs were obtained in the ranges of 0.05 to 10.0, 0.03 to 13.0 and 0.04 to 9.0?µg?mL?1 for Cu(II), Co(II) and Ag(I) ions concentrations, respectively. Relative standard deviations (n?=?7) for Cu(II), Co(II) and Ag(I) ions were found ±2.5 %, ±0.84% and ±3.8% respectively. The method was applied to the determination of mentioned ions in well water, waste water and lettuce sample.  相似文献   

4.
A new chelating resin based on chitosan biopolymer modified with 5-sulphonic acid 8-hydroxyquinoline using the spray drying technique for immobilization is proposed. The chelating resin was characterized by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) and surface area by nitrogen sorption. The efficiency of the chelating resin was evaluated by the preconcentration of metal ions Cu(II) and Cd(II) present in aqueous samples in trace amounts. The metal ions were previously enriched in a minicolumn and the concentrations of the analytes were determined on-line by flame atomic absorption spectrometry (FAAS). The maximum retention for Cu(II) occurred in the pH range 8-10, and for Cd(II) at pH 7. The optimum flow rate for sorption was found to be 7.2 ml min−1 for the preconcentration of the metal ions. The analytes gave relative standard deviations (R.S.D.) of 0.7 and 0.6% for solutions containing 20 μg l−1 of Cu(II) and 15 μg l−1 of Cd (II), respectively (n=7). The enrichment factors for Cu(II) and Cd (II) were 19.1 and 13.9, respectively, and the limits of detection (LOD) were 0.2 μg l−1 for Cd(II) and 0.3 μg l−1 for Cu(II), using a preconcentration time of 90 s (n=11). The accuracy of the proposed method was evaluated by the metal ion recovery technique, in the analysis of potable water and water from a lake, with recoveries being between 97.2 and 107.3%.  相似文献   

5.
A stable chelating resin matrix was prepared by covalently linking resorcinol with polyurethane foam matrix through a –N=N– group. Preconcentration and determination of trace Ag+ and Hg2+ ions from samples of different origin, using Res-PUF, were studied. Various conditions influencing the sorption of these metal ions onto Res-PUF were optimized. The kinetics of sorption of the Ag+ and Hg2+ by Res-PUF were found to be fast, reached equilibrium in few minutes (5–10?min) and followed a first-order rate equation with an overall rate constant k in 0.102 and 0.267/min, respectively. Study of the variation of the sorption of the tested metal ions with temperature yielded average values for ΔG, ΔH and ΔS of ?3.94, ?22.02 and ?58.37, respectively. The mean free sorption energy (E) computed from the Dubinin–Radushkevich (D–R) isotherm was found to be equal to 8.91 kJ/mol, which reflects the chelation sorption process. The capacities of the foam material were 0.15 and 0.07?mmol/g for Ag+ and Hg2+, respectively. Preconcentration factors of?>?50 were achieved (RSD?≈?5.99). The proposed preconcentration procedure was applied successfully to the determination of trace metal ions in natural and wastewater samples.  相似文献   

6.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

7.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5-5.0, 4.5, 4.0-5.0, 4.0, 5.0 and 5.0-7.0, respectively, and their desorptions by 2 mol L(-1) HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g(-1) of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL(-1). The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD < or = 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of approximately 3.0%.  相似文献   

8.
Total dissolved and labile concentrations of Cd(II), Cu(II), Ni(II) and Pb(II) were determined at six locations of the Bourgas Gulf of the Bulgarian Black Sea coast. Solid phase extraction procedure based on monodisperse, submicrometer silica spheres modified with 3-aminopropyltrimethoxysilane followed by the electrothermal atomic absorption spectrometry (ETAAS) was developed and applied to quantify the total dissolved metal concentrations in sea water. Quantitative sorption of Cd, Cu, Ni and Pb was achieved in the pH range 7.5–8, for 30?min, adsorbed elements were easily eluted with 2?mL 2?mol?L?1 HNO3. Since the optimal pH for quantitative sorption coincides with typical pH of Black Sea water (7.9–8.2), on-site pre-concentration of the analytes without any additional treatment was possible. Detection limits achieved for total dissolved metal quantification were: Cd 0.002?µg?L?1, Cu 0.005?µg?L?1, Ni 0.03?µg?L?1, Pb 0.02?µg?L?1 and relative standard deviations varied from 5–13% for all studied elements (for typical Cd, Cu, Ni and Pb concentrations in Black Sea water). Open pore diffusive gradients in thin films (DGT) technique was employed for in-situ sampling and pre-concentration of the sea water and in combination with ETAAS was used to determine the proportion of dynamic (mobile and kinetically labile) species of Cd(II), Cu(II), Ni(II) and Pb(II) in the sea water. Obtained results showed strong complexation for Cu and Pb with sea water dissolved organic matter. The ratios between DGT-labile and total dissolved concentrations found for Cu(II) and Pb(II) were in the range 0.2–0.4. For Cd and Ni, these ratios varied from 0.6 to 0.8, suggesting higher degree of free and kinetically labile species of these metals in sea water.  相似文献   

9.
Wittaya Ngeontae 《Talanta》2009,78(3):1004-630
Chemically modified silica containing amidoamidoxime group was studied as a sorbent for solid-phase extraction (SPE) and preconcentration of Cu(II) prior to determination by flame atomic absorption spectrometry (FAAS). The sorbent showed an extremely high selectivity towards Cu(II) in the pH range of 4-6, while the extraction of Pb(II), Cd(II), Ni(II) and Co(II) was low. The adsorption isotherm followed the Langmuir model and the maximum sorption capacity of 0.0163 mmol Cu(II) g−1 was achieved. In the flow system, Cu(II) was completely retained on a column containing 40 mg of the modified silica at the flow rate of 4.0 mL min−1 and quantitatively eluted by 5 mL of 1% (v/v) HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg L−1 was observed. When applied for preconcentration and determination of Cu(II) in tap water, pond water, and seawater, the recoveries were 96, 101, and 95%, respectively, with high precision (% relative standard deviation (R.S.D.) < 4) and low method detection limit (9 μg L−1).  相似文献   

10.
A new chelating resin, poly(diacetonitrile methacrylamide-co-divinylbenzene-co-vinylimidazole), was synthesized and characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The novel resin was used for the first time as a chelating adsorbent for the preconcentration of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn from various samples by flame atomic absorption spectrometry. The adsorption capacities of the resin were 29.3, 31.6, 29.3, 27.3, 35.5, 31.7, 39.8, and 32.3?mg?g?1 for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn, respectively. The detection limits of the metal ions were from 0.42 to 3.21?µg?L?1. A preconcentration factor of 30 for all metal ions was obtained. The precision of the method as the relative standard deviation was less than or equal to 2.6%. The described method was validated with certified reference materials and fortified real samples. The method was used for the determination of the analytes in well water and wastewater.  相似文献   

11.
Immobilization of β-cyclodextrin on Dowex resin as an insoluble polymeric matrix by covalent bond presents a new solid-phase medium for preconcentration of Pb (II) at trace level in environmental samples prior to its flame atomic absorption spectrometric determination. The method is based on the sorption of lead after passing on modified Dowex sorbent in a column. The effect of several parameters such as pH, flow rate of sample, eluent kind and volume was investigated. The sorption capacity of the matrix has been found to be 0.4996?mg?g?1 of adsorbent with the preconcentration factor of 250 for Pb (II). Nitric acid (3 M) as an eluent was sufficient to obtain quantitative recovery (>95%) for Pb (II). The optimum flow rate was 10?ml?min ?1. The calibration curve was linear in the range of (3–250?ng?mL?1) with a correlation coefficient of 0.9995. The limit of detection (LOD) based on three times the standard deviation of the blank was 1.37?ng?mL?1. The relative standard deviation (RSD) for determination of 10?ng?mL?1 and 100?ngmL?1 of Pb (II) was 3.00 % and 0.58 % (n?=?10), respectively. The method was successfully applied to determination of lead in some environmental samples such as tap water, river water, soil and rice.  相似文献   

12.
《Electroanalysis》2005,17(8):685-693
Carbon paste electrodes were modified by mixing appropriate amounts of the monomers o‐phenylendiamine, p‐phenylendiamine and m‐phenylendiamine (o‐PD, p‐PD and m‐PD) into a graphite powder‐paraffin oil matrix. The electropolymerization of the incorporated phenylendiamine was then carried out in a carbon paste electrode in acidic medium by cyclic voltammetry between ?0.30 V and +0.90 or under constant potential. The modified carbon paste electrodes (MCPEs) obtained by this electropolymerization method were found to be useful for trace determination of Pb2+ in aqueous solutions. Lead(II) was first preconcentrated on the modified electrodes by complexation with the modifier, and the electrode was then transferred to an electrochemical cell. The best results in terms of sensitivity and detection limit were obtained with poly p‐phenylenediamine (poly (p‐PD)). For a 10‐min preconcentration time, the calibration plot was linear from 5×10?8 mol L?1 to 10?5 mol L?1, with r2=0.999 and relative standard deviation equal to 5%. However, the lowest lead concentration that could be detected was 10?9 mol L?1. Interference from metal ions like Cd(II), Hg(II), Zn(II), Fe(II) and Cu(II) was also studied.  相似文献   

13.
Multiwalled carbon nanotubes chemically functionalized with 2-((3-silylpropylimino) methyl) phenol (SPIMP-MWCNT) and successfully applied for the solid phase extraction (SPE) of some metal ions in food samples. The influences of the analytical parameters including pH, amounts of solid phase, eluent conditions (type, volume and concentrations), sample volume and interference of some metal ions on the recoveries of ions Cu2+, Pb2+, Fe2+, Ni2+ and Zn2+ ion were investigated. The metal ions retained on SPIMP-MWCNT was eluted using 6?mL of 4?mol?L?1 HNO3 solution and their content was determined by flame atomic absorption spectrometry (FAAS) with recoveries more than 95% and relative standard deviations (n?=?5) between 2.4–3.4% for both reproducibility and repeatability. The detection limit of this metal ions was between 1.0–2.6?ng?mL?1 (3S b , n?=?10) and their preconcentration factor was 100, while their loading capacity was above 32.9?mg?g?1 of SPIMP-MWCNT. The proposed method was successfully applied for the preconcentration and determination of analytes in different samples.  相似文献   

14.
Poly(2‐hydroxyethyl methacrylate‐ethylene dimethacrylate) (PHEMA‐EDMA) beads were produced by free radical co‐polymerization of 2‐hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA). Then, metal complexing ligand alizarin yellow was covalently attached onto PHEMA‐EDMA beads. The resulting resin has been characterized by FT‐IR and studied for the preconcentration and determination of trace Pb(II) ion from solution samples. The optimum pH value for sorption of the metal ion was 5. The sorption capacity of functionalized resin is 100 mg.g‐1. The chelating resin can be reused for 20 cycles of sorption‐desorption without any significant change in sorption capacity. A recovery of 96% was obtained for the metal ion with 0.1 M nitric acid as eluting agent. The equilibrium adsorption data of Pb(II) on modified resin were analyzed by Langmuir and Freundlich models. Based on equilibrium adsorption data the Langmuir and Freundlich constants were determined 2.571 and 418.7 at pH 5 and 25 °C. The method was applied for lead ions determination from well water sample.  相似文献   

15.
The efficiencies and performances of silver nanoparticle loaded activated carbon modified with 2-(4-isopropylbenzylideneamino)thiophenol (IPBATP-Ag-NP-AC) and activated carbon modified with IPBATP (IPBATP-AC), as new sorbents, were evaluated for separation and preconcentration of Cu2+, Zn2+, Co2+, Cd2+ and Pb2+ ions from real environmental samples. The retained metals content was reversibly eluted using 5?mL of CH3COOH (6.0?mol?L?1) and/or 10?mL of 4.0?mol?L?1 HNO3 for IPBATP-Ag-NP-AC and IPBATP-AC, respectively. The experimental parameters influence the recoveries of metal ions including pH, amounts of ligand and supports, condition of eluents, sample and eluent flow rates of has been investigated. The preconcentration factors were found to be 100 for Zn2+, Cd2+, Co2+, Cu2+ and 50 for Pb2+ ions using IPBATP-Ag-NP-AC, and 50 for Zn2+, Cd2+, Co2+, Cu2+ and 25 for Pb2+ ions using IPBATP-AC. The detection limit of both SPE-based sorbents was between 1.6–2.5?ng?mL?1 for IPBATP-AC and 1.3–2.5?ng?mL?1 for IPBATP-Ag-NP-AC. The proposed methods have been successfully applied for the extraction and determination of the understudy metal ions content in some real samples with extraction efficiencies higher than 90% and relative standard deviations (RSD) lower than 2.4%.  相似文献   

16.
5,11,17,23-Tetrakis(1,1-dimethylethyl)-25,26-dihydroxy-27,28-crown-4-calix[4]arene in the cone conformation was synthesized. This p-tert-butylcalix[4]arene-1,2-crown-4 compound was then anchored with Merrifield chloromethylated resin beads. The modified polymeric resin was characterized by 1H NMR, FT-IR and elemental analysis and used successfully for the separation and preconcentration of Cu(II), Cd(II), Co(II), Ni(II) and Zn(II) prior to their determination by FAAS. Effective extraction conditions were optimized in both batch and column methods. The resin exhibits good separating ability with maximum between pH 6.0-7.0 for Cu(II), pH 6.0 for Cd(II), pH 5.0 for Co(II), pH 4.0-4.5 for Ni(II), and pH 4.5 for Zn(II). The elution studies were carried out with 0.5 mol L−1 HCl for Cu(II), Co(II) and Co(II), 1.0 mol L−1 HCl for Cd(II) and Zn(II). The sorption capacity, preconcentration factor and distribution coefficient of each metal ion were determined. The detection limits were 1.10, 1.25, 1.83, 1.68 and 2.01 μg L−1 for Cu(II), Cd(II), Co(II), Ni(II) and Zn(II). The influence of several ions on the resin performance was also investigated. The validity of the proposed method was checked for these metal ions in NIST standard reference material 2709 (San Joaquin Soil) and 2711 (Montana Soil).  相似文献   

17.
A solid phase extraction method for the determination of Cu(II), Mn(II) and Zn(II) metal ions in natural water and leafy vegetable samples by ICP-AES was developed. The method was based on the sorption of metal ions onto Amberlite XAD-16 functionalized with a new chelating ligand potassium 2-benzoylhydrazinecarbodithioate (Amberlite XAD-16-PBHCD) and elution with nitric acid. The optimum experimental conditions for the quantitative sorption of the three metal ions, namely, effect of pH, sample volume, flow rate, concentration of eluent, sorption capacity, kinetics of sorption, and the effect of diverse ions on the sorption of analytes have been investigated. All the metal ions were quantitatively retained by the functionalized resin at pH 5.0 and sorbed metals could be eluted with 2.0?M HNO3. The detection limits were 5.6, 4.5 and 1.8?µg?L?1 for Cu(II), Mn(II) and Zn(II), respectively. The developed method was applied for the determination of Cu(II), Mn(II) and Zn(II) in water and leafy vegetable samples.  相似文献   

18.
 The sorption of metal ions (e.g. Cd2+, Cu2+, Ni2+ and Pb2+) from aqueous solution on the anion exchange resin Amberlite IRA-904 modified with tetrakis(4-carboxyphenyl)porphyrin (TCPP) was studied in batch equilibrium experiments. The influence of operating variables such as initial pH and contact time between solution and the resin on the equilibrium parameters was measured. The selectivity order of investigated metal ions was evaluated as follows: Pb2+ > Ni2+ > Cu2+ > Cd2+. The matrix cations, such as Mg2+ and Ca2+, exhibit very low affinity for TCPP-modified resin. The rate uptake of the sorption procedure is predominantly controlled by film diffusion. The best retention kinetic was observed for lead where half the saturation of the TCPP-modified sorbent was achieved in less than 5 min. Author for correspondence. E-mail: kryspyrz@chem.uw.edu.pl Received November 20, 2002; accepted January 26, 2003 Published online May 5, 2003  相似文献   

19.
A simple and rapid solid phase extraction?Cflow injection procedure is developed for on-line trace determination of Cu(II) and Pb(II) by flame atomic absorption spectrometry (FAAS). Multi-walled carbon nanotubes modified with a new Schiff??s base, 2,2??-(1E, 1E??)-(4-Methyl-1, 2-phenylene) bis (azen-1-yl-1-ylidine) bis (Methane-1-yl-1-ylidene) diphenol was used as a novel adsorbent material. Quantitative simultaneous extraction was obtained at pH 7.0. The retained metal ions were then eluted efficiently with 1.0?M HNO3 into the nebulizer of FAAS for on-line determination. Different variables affecting the preconcentration efficiency, including pH, eluent concentration, sample and eluent flow rates and sample loading time, were optimized. Using 3?min preconcentration of sample solution at flow rate of 5?mL?min?1 provided the enrichment factors of 20 and 21.5 for Cu(II) and Pb(II), respectively, at a sampling frequency of 17?h?1. The detection limits (3??) were found to be 0.80 and 1.80???g?L?1 for Cu(II) and Pb(II), respectively; and the relative standard deviations at 0.05???g?mL?1 of these metal ions were 1.7 and 1.8% (n?=?8), respectively. The accuracy was assessed by analysis of a certified reference material NKK-916 and the obtained results are in good agreement with certified amounts of Cu(II) and Pb(II). The proposed method was successfully applied to the determination of target analytes in different real samples.  相似文献   

20.
In the present study, the ?5-(4-dimethylaminobenzylidene)rhodanin-modified SBA-15? was applied as stable solid sorbent for the separation and preconcentration of trace amounts of cobalt ions in aqueous solution. SBA-15 was modified by ?5-(4-dimethylaminobenzylidene)rhodanin reagent. The sorption of Co2+ ions was done onto modified sorbent in the pH range of 6.8–7.9 and desorption occurred in 5.0 mL of 3.0 mol L?1 HNO3. The results exhibit a linear dynamic range from 0.01 to 6.0 mg L?1 for cobalt. Intra-day (repeatability) and inter-day (reproducibility) for 10 replicated determination of 0.06 mg L?1 of cobalt was ±1.82% and ?±1.97%?. Detection limit was 4.2 µg L?1 (3Sb, n = 5) and preconcentration factor was 80. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type and interference ions were studied for the preconcentration of Co2+. The proposed method was applied for the determination of cobalt in standard samples, water samples and agricultural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号