首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Chloride, isocyanate and isothiocyanate hydride carbonyl ruthenium(II) complexes of 4-(4-nitrobenzyl)pyridine were synthesized from the precursor complex [RuHCl(CO)(PPh3)3] and characterized by IR, NMR, UV–Vis spectroscopy and X-ray crystallography. The electronic structures of the complexes were investigated by means of DFT calculations, based on their crystal structures. The spin-allowed singlet–singlet electronic transitions of the complexes were calculated by time-dependent DFT, and the UV–Vis spectra are discussed on this basis. The emission properties of the complexes were studied at ambient temperature, and the quantum yields of fluorescence, the lifetimes and nature of the excited states are discussed. The chloride and isothiocyanate complexes are practically nonemissive, with quantum yields under 0.01 %. Interpretation of spectra, supported by TD-DFT calculations, indicates that in this energy region, the transitions have MLCT character with admixture of LLCT (chloride and isothiocyanate complexes). The dominant LLCT character was visible in the case of the most emissive (isocyanate) complex. The low values of the lifetimes and quantum yields for these complexes indicate the influence of the metal center in the emission process.  相似文献   

2.
New organoboron aminoquinolate‐based polymers linked by π‐conjugated bridge were prepared by Sonogashira–Hagihara coupling of organoboron aminoquinolate‐based bisiodo monomers bearing biphenyl or bithiophene moiety with 1,4‐diethynylbenzene derivatives. Tetracoordination states of boron atoms in the obtained polymers were confirmed by 11B NMR spectroscopy, and they were also characterized by 1H NMR and IR spectroscopies and size‐exclusion chromatography. Their optical properties were studied by UV–vis absorption and photoluminescence spectroscopies. In the region above 400 nm, the polymers prepared from 1,4‐diethynyl‐2,5‐dioctyloxybenzene showed bathochromic shifts when compared with those prepared from 1.4‐diethynyl‐2‐perfluorooctyl‐5‐trifluoromethylbenzene. The polymers with biphenyl moiety showed higher absolute fluorescence quantum yields (?F = 0.28 and 0.65), whereas those with bithiophene moiety led to decreasing of the low quantum yields (?F = 0.19 and 0.00). The density‐functional theory (DFT) and time‐dependent–DFT calculations of model compounds corresponding to the polymers were in good agreement with the results from UV–vis properties. The calculations revealed that the electronic structure of the polymer with bithiophene moiety is different from that with biphenyl moiety, and predicted the electron transfer from the bithiophene moiety to the π‐extended quinoline moiety in transition state. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3693–3701, 2010  相似文献   

3.
Spectroscopic and photophysical properties of firefly luciferin and oxyluciferin analogues with an amine substituent (NH2, NHMe and NMe2) at the C6' position were studied based on absorption and fluorescence measurements. Their π‐electronic properties were investigated by DFT and TD‐DFT calculations. These compounds showed fluorescence solvatochromism with good quantum yields. An increase in the electron‐donating strength of the substituent led to the bathochromic shift of the fluorescence maximum. The fluorescence maxima of the luciferin analogues and the corresponding oxyluciferin analogues in a solvent were well correlated with each other. Based on the obtained data, the polarity of a luciferase active site was explained. As a result, the maximum wavelength of bioluminescence for a luciferin analogue was readily predicted by measuring the photoluminescence of the luciferin analogue in place of that of the corresponding oxyluciferin analogue.  相似文献   

4.
The synthesis, photophysical and photochemical properties of the tetra- and octa-[4-(benzyloxyphenoxy)] substituted gallium(III) and indium(III) phthalocyanines are reported for the first time. The new compounds have been characterized by elemental analysis, IR, 1H NMR spectroscopy and electronic spectroscopy. General trends are described for quantum yields of photodegredation, fluorescence quantum yields and lifetimes, triplet lifetimes and triplet quantum yields as well as singlet oxygen quantum yields of these compounds in dimethylsulfoxide (DMSO). Substituted indium phthalocyanine complexes (7b9b) showed much higher quantum yields of triplet state and shorter triplet lifetimes, compared to the substituted GaPc derivatives due to enhanced intersystem crossing (ISC) in the former. The gallium and indium phthalocyanine complexes showed phototransformation during laser irradiation due to ring reduction. The singlet oxygen quantum yields (ΦΔ), which give an indication of the potential of the complexes as photosensitizers in applications where singlet oxygen is required (Type II mechanism) ranged from 0.51 to 0.94. Thus, these complexes show potential as photodynamic therapy of cancer.  相似文献   

5.
李林波  纪顺俊  刘宇 《中国化学》2008,26(4):595-598
通过Suzuki偶联反应合成了一系列含三苯胺的1,8-萘酰亚胺衍生物,并进行了表征及光谱和电化学性能研究。研究表明该类化合物的荧光波长在584~610nm,位于橙色区。三苯胺的引入降低了化合物的HOMO值,有利于空穴的注入。  相似文献   

6.
设计并合成了3 个新的受体-给体-受体(A-D-A)构型上转换荧光分子,用傅里叶变换红外光谱、核磁共振氢谱、质谱和元素分析进行了表征. 测定了它们在不同溶剂中的线性吸收光谱、单光子荧光光谱和荧光量子产率. 以飞秒激光作为光源,研究了它们的双光子吸收和上转换荧光特性. 结果表明:该类化合物的荧光量子产率为0.20-0.68,双光子吸收截面为16×10-50-101×10-50 cm4·s·photon-1,具有较强的蓝色上转换荧光发射.  相似文献   

7.
The synthesis, spectral studies, and theoretical calculations of a new fluorescent heterocyclic system are described. New 3H-benzo[a]imidazo[4,5-j]acridines were obtained in high yields by the reaction of 1-alkyl-5-nitro-1H-benzimidazoles with (naphthalen-1-yl)acetonitrile via nucleophilic substitution of hydrogen, and their structures were established by spectral (UV-Vis, FT-IR, 1H and 13C NMR) and analytical data. Study of the optical and solvatochromic properties of the dyes revealed their high molar absorption coefficients and high fluorescence quantum yields which in some cases exceeded quantum yields of well-known fluorescent dyes such as fluorescein. Density functional theory (DFT) calculations using the B3LYP hybrid functional and 6-311++G(d,p) basis set were performed to obtain optimized geometries and frontier orbital structures of the synthesized compounds. The electronic absorption spectra were also simulated by the time-dependent density functional theory (TD-DFT) method.  相似文献   

8.
The structural and electronic properties of the fluorene-pyridine copolymer (FPy)(n), (n = 1-4) were investigated theoretically by means of quantum mechanical calculations based on density functional theory (DFT) and time-dependent DFT (TD-DFT) using the B3LYP functional. Geometry optimizations of these oligomers were performed for the ground state and the lowest excited state. It was found that (FPy)(n) is nonplanar in its ground state, whereas a more pronounced trend toward planarity is observed in the S(1) state. Absorption and fluorescence energies have been extrapolated to infinite chain length making use of their good linearity with respect to 1/n. An extrapolated value of 2.64 eV is obtained for vertical excitation energy. The S(1)<--S(0) electronic excitation is characterized as a highest occupied molecular orbital to lowest unoccupied molecular orbital transition and is dominating in terms of oscillator strength. Fluorescence energies and radiative lifetime were calculated as well. The obtained results indicate that the fluorescence energy and radiative lifetime of (FPy)(n) are 2.16 eV and 0.38 ns, respectively. The decrease of fluorescence energy and radiative lifetime with the increase in the chain length is discussed.  相似文献   

9.
The syntheses of new three phthalonitriles (1, 2 and 3), together with photophysical and photochemical properties of the resulting peripherally and non-peripherally tetrakis- and octakis 3,4-(methylendioxy)-phenoxy-substituted zinc phthalocyanines (4, 5 and 6) are described for the first time. Complexes 4, 5 and 6 have been synthesized and characterized by elemental analysis, IR, 1H NMR spectroscopy, electronic spectroscopy and mass spectra. Complexes 4, 5 and 6 have good solubility in organic solvents such as CHCl3, DCM, DMSO, DMF, THF and toluene and are mainly not aggregated (except for complex 6 in DMSO) within a wide concentration range. General trends are described for singlet oxygen, photodegradation, fluorescence quantum yields, triplet quantum yields and triplet life times of these complexes in DMSO and toluene. Complex 4 has higher singlet oxygen quantum yields, fluorescence quantum yields, triplet quantum yields and triplet life times than complexes 5 and 6. The effect of the solvents on the photophysical and photochemical parameters of the zinc(II) phthalocyanines (4, 5 and 6) are also reported.  相似文献   

10.
A series of thienylcarbazoles were synthesized by Suzuki-Miyaura and Ullmann coupling reactions. In these compounds, the 2-thienyl or 2,2'-bithiophen-5-yl group is connected at the N-, 1,8-, 3,6-, 2,7-, 2,7,N-, or 1,8,N-positions of the carbazole ring. The effects of structural variations on their electronic, photophysical, and electrochemical properties were explored by UV-vis and fluorescence spectroscopies, cyclic voltammetry (CV), and DFT calculations in evaluation of their potential as material components. The thienyl substituents at the 2,7-positions in 4, 5, and 10 are responsible for a high degree of π-conjugation and strong emission with fluorescence quantum yields up to 0.61. The CV on a series of thienylcarbazoles revealed a good electron-donating ability of 3,6-substituted carbazoles 3 and 9. The number of thiophene units was found to affect the extent of π-conjugation, the resulting HOMO-LUMO gaps, and fluorescence efficiency. The crystal structures of 5 and 9 were also disclosed.  相似文献   

11.
A combined theoretical and experimental study of the structure, optical, and photophysical properties of four 2,7-carbazolenevinylene-based derivatives in solution is presented. Geometry optimizations of the ground states of PCP, PCP-CN, TCT, and TCT-CN were carried out using the density functional theory (DFT/B3LYP/6-31G*). It is found that PCP and TCT are nearly planar in their ground electronic states (S0), whereas the cyano derivatives are more twisted. The nature and the energy of the first singlet-singlet electronic transitions have been obtained from time-dependent density functional theory (TDDFT) calculations performed on the optimized geometries. For all the compounds, excitation to the S1 state corresponds mainly to the promotion of one electron from the highest-occupied molecular orbital to the lowest-unoccupied molecular orbital, and the S1 <-- S0 electronic transition is strongly allowed and polarized along the long axis of the molecular frame. The optimization (relaxation) of the first singlet excited electronic state (S1) has been done using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. It is observed that all four investigated compounds become more planar in their S1 relaxed excited state. Electronic transition energies from the relaxed excited states have been obtained from TDDFT calculations performed on the S1-optimized geometries. The absorption and fluorescence spectra of the carbazolenevinylenes have been recorded in chloroform. A good agreement is obtained between TDDFT vertical transitions energies and the (0,0) absorption and fluorescence bands. The change from phenylene to thiophene rings as well as the incorporation of cyano substituents induce bathochromic shifts in the absorption and fluorescence spectra. From the analysis of the energy of the frontier molecular orbitals, it is believed that thiophene rings and CN substituents induce some charge-transfer character to the first electronic transition, which is responsible for the red shifts observed. Finally, the fluorescence quantum yield and the lifetime of the compounds in chloroform have been obtained. In sharp contrast with many oligothiophenes, it is observed that TCT possesses a high fluorescence quantum yield. On the other hand, the CN-containing derivatives exhibit much lower fluorescence quantum yields, probably due to the combined influence of steric effects and charge-transfer interactions caused by the cyano groups.  相似文献   

12.
The PIFCO technique in which mass-selected photoion—fluorescence photon coincidences are counted, was used to investigate whether I2+, IBr+ and ICl+ fluoresce. Measurements were made of lifetimes and fluorescence quantum yields of electronic excited states of these ions. Emission was discovered for I2+ and IBr+, but ICl+ apparently does not fluoresce. Information on the radiative properties of Br2+ was obtained as a by-product of the work on IBr+. Fragment ion kinetic energy releases were determined and provide information on dissociative ionization processes in the halogen and interhalogen ions studied.  相似文献   

13.
Heteroleptic cyclometalated iridium(III) complexes ( Ir1 – Ir5 ) featuring piz-based ligands and acetylacetone ancillary ligand are synthesized and characterized. Their photophysical and electrochemical properties were studied, and DFT calculations were used to further support the experiment results. All the complexes emit yellow color with quantum yields of 12.2–56.5% in dichloromethane solution at room temperature, and the emission originates from a hybrid 3MLCT/3ILCT/3LLCT excited state.  相似文献   

14.
New fluorescent heterocyclic ligands were synthesized by the reaction of 8‐(4‐chlorophenyl)‐3‐alkyl‐3H‐imidazo[4',5':3,4]benzo [1,2‐c]isoxazol‐5‐amine with p‐hydroxybenzaldehyde and p‐chlorobenzaldehyde in good yields. The coordination ability of the ligands with Fe3+ ion was examined in an aqueous metanolic solution. Schiff base ligands and their metal complexes were characterized by elemental analyses, IR, UV–vis, mass, and NMR spectra. The optical properties of the compounds were investigated and the results showed that the fluorescence of all compounds is intense and their obtained emission quantum yields are around 0.15 – 0.53. Optimized geometries and assignment of the IR bands and NMR chemical shifts of the new complexes were also computed by using density functional theory (DFT) methods. The DFT‐calculated vibrational wavenumbers and NMR chemical shifts are in good agreement with the experimental values, confirming suitability of the optimized geometries for Fe(III) complexes. Also, the 3D‐distribution map for HOMO and LUMO of the compounds were obtained. The new compounds showed potent antibacterial activity and their antibacterial activity (MIC) against Gram‐positive and Gram‐negative bacterial species were also determined. Results of antibacterial test revealed that coordination of ligands to Fe(III) leads to improvement in the antibacterial activity.  相似文献   

15.
The preparation of eight metallophthalocyanine complexes substituted by N-piperidineethanol was achieved by tetramerization of 3-[2-(piperidin-1-yl)ethoxyl] phthalonitrile and 4-[2-(piperidin-1-yl)ethoxyl]phthalonitrile in the presence of a metal salt with n-pentanol as solvent and DBU as catalyst, respectively. These complexes were characterized by IR, elemental analysis, 1H NMR and mass spectra. Some properties such as UV/visible absorption spectra, rate of singlet oxygen yields, fluorescence spectra and quantum yields were examined and discussed.  相似文献   

16.
Several boron compounds with 2-(imidazo[1,5-a]pyridin-3-yl)phenols, differentiated by the nature of the substituent (R) in the para position of the hydroxy group, have been synthesized and thoroughly characterized both in solution (1H, 13C, 11B, 19F NMR) and in the solid state (X-ray). All derivatives displayed attractive photophysical properties like very high Stokes shift, high fluorescence quantum yields and a good photostability in solution. Time-Dependent Density Functional Theory (TD-DFT) calculations allowed to define the main electronic transitions as intra ligand transitions (1ILT), which was corroborated by the Natural Transition Orbitals (NTOs) shapes. The HOMO-LUMO energy gap was correlated to the electronic properties of the substituent R on the phenolic ring, as quantified by its σp Hammett constant.  相似文献   

17.
The electronic absorption and fluorescence spectra of dibenzoylmethanatoboron difluoride (DBMBF2) in a number of polar and nonpolar solvents have been studied; the quantum yields and fluorescence lifetimes have been measured, and the vibrational structure of the spectra has been analyzed. The equilibrium configuration parameters of DBMBF2 in the ground state have been determined by the DFT method. It has been found that there is only one stable conformation of DBMBF2 in the ground state.  相似文献   

18.
New fluorescent nucleobase analogues (FBAs) are emerging as extraordinarily useful tools for DNA labelling technologies. The highly fluorescent adenine analogue 2-aminopurine (2AP) is still the most used within the few hundreds of newly FBAs synthesized, but its excitation in the UV region demands for high energy sources endangering living cells. New and highly fluorescent 2AP derivatives, 2-amino-6-cyanopurines, were obtained using simpler but efficient synthesis method. All the new compounds exhibit advantageous photophysical properties over 2AP, showing absorption and emission bands ranging the visible region (blue-green region), high fluorescence quantum yields and Stokes’ shifts, especially in non-protic organic solvents. Density Functional Theory calculations (DFT) of electronic and vibrational structure were performed, allowing to predict absorption and emission spectra. In addition, these 2-amino-6-cyanopurines exhibit little to no toxicity in assays using yeast cells.  相似文献   

19.
The kinetics of complex formation between zinc and 5,10,15,20-tetraphenylporphyrin and 5,10,15,20-tetra(4-hydroxyphenyl)porphyrin in acetonitrile is studied in the temperature range from 298 to 318 K. The fluorescent properties of these compounds are examined, the emission in the red region of the spectrum is measured, and the fluorescence quantum yields are determined. It is found that although the electronic absorption spectra of the studied compounds are almost identical, hydroxyl substituents are observed to have a considerable effect on the chelating ability of ligands. The rate constant of the formation of ZnT(4-OH-Ph)P is thus approximately three times higher than that of ZnTPhP, with the energy consumption being lower (about 20 kJ mol–1). The calculated fluorescence quantum yields of H2TPhP, H2T(4-OH-Ph) P, ZnTPhP, and ZnT(4-OH-Ph)P in acetonitrile are half those in toluene, while the ratio between the quantum yields of ligands and their metal complexes is a constant equal to approximately 3 and does not depend on which solvent is used.  相似文献   

20.
A series of donor–π–acceptor–π–donor (D -π-A-π-D) benzoazole dyes with 2H-benzo[d][1,2,3]triazole or BTD cores have been prepared and their photophysical properties characterized. The properties of these compounds display remarkable differences, mainly as a result of the electron-donor substituent. Dyes with the best properties have visible-light absorption over λ=400 nm, large Stokes shifts in the range of about 3500–6400 cm−1, and good fluorescence emission with quantum yields of up to 0.78. The two-photon absorption properties were also studied to establish the relationship between structure and properties in the different compounds synthesized. These results provided cross sections of up to 1500 GM, with a predominance of S2←S0 transitions and a high charge-transfer character. Time-dependent DFT calculations supported the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号