首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王云虎  陈勇 《中国物理 B》2013,22(5):50509-050509
We investigate the extended (2+1)-dimensional shallow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Bäcklund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method.  相似文献   

2.
In this paper, two types of the (2+1)-dimensional breaking soliton equations are investigated, which describe the interactions of the Riemann waves with the long waves. With symbolic computation, the Hirota bilinear forms and Bäcklund transformations are derived for those two systems. Furthermore, multisoliton solutions in terms of the Wronskian determinant are constructed, which are verified through the direct substitution of the solutions into the bilinear equations. Via the Wronskian technique, it is proved that theBäcklund transformations obtained are the ones between the (N-1)- and N-soliton solutions. Propagations and interactions of the kink-/bell-shaped solitons are presented. It is shown that the Riemann waves possess the solitonic properties, and maintain the amplitudes and velocities in the collisions only with some phase shifts.  相似文献   

3.
Under investigation in this paper is a variable-coefficient generalized dispersive water-wave system, which can simulate the propagation of the long weakly non-linear and weakly dispersive surface waves of variable depth in the shallow water. Under certain variable-coefficient constraints, by virtue of the Bell polynomials, Hirota method and symbolic computation, the bilinear forms, one- and two-soliton solutions are obtained. Bäcklund transformations and new Lax pair are also obtained. Our Lax pair is different from that previously reported. Based on the asymptotic and graphic analysis, with different forms of the variable coefficients, we find that there exist the elastic interactions for u, while either the elastic or inelastic interactions for v, with u and v as the horizontal velocity field and deviation height from the equilibrium position of the water, respectively. When the interactions are inelastic, we see the fission and fusion phenomena.  相似文献   

4.
Under investigation in this paper is a (3 q- 1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation, which describes the propagation of surface and internal water waves. By virtue of the binary Bell polynomials, symbolic computation and auxiliary independent variable, the bilinear forms, soliton solutions, Backlund transformations and Lax pair are obtained. Variable coefficients of the equation can affect the solitonic structure, when they are specially chosen, while curved and linear solitons are illustrated. Elastic collisions between/among two and three solitons are discussed, through which the solitons keep their original shapes invariant except for some phase shifts.  相似文献   

5.
In this paper, based on N-soliton solutions, we introduce a new constraint among parameters to find the resonance Y-type soliton solutions in (2+1)-dimensional integrable systems. Then, we take the (2+1)-dimensional Sawada–Kotera equation as an example to illustrate how to generate these resonance Y-type soliton solutions with this new constraint. Next, by the long wave limit method, velocity resonance and module resonance, we can obtain some new types of hybrid solutions of resonance Y-type solitons with line waves, breather waves, high-order lump waves respectively. Finally, we also study the dynamics of these interaction solutions and indicate mathematically that these interactions are elastic.  相似文献   

6.
For a one (2+1)-dimensional combined Kadomtsev-Petviashvili with its hierarchy equation, the missing D'Alembert type solution is derived first through the traveling wave transformation which contains several special kink molecule structures. Further, after introducing the Bäcklund transformation and an auxiliary variable, the N-soliton solution which contains some soliton molecules for this equation, is presented through its Hirota bilinear form. The concrete molecules including line solitons, breathers and a lump as well as several interactions of their hybrid are shown with the aid of special conditions and parameters. All these dynamical features are demonstrated through the different figures.  相似文献   

7.
In this paper, we investigate some new interesting solution structures of the(2+1)-dimensional bidirectional Sawada–Kotera(bSK) equation. We obtain soliton molecules by introducing velocity resonance. On the basis of soliton molecules, asymmetric solitons are obtained by changing the distance between two solitons of molecules. Based on the N-soliton solutions,several novel types of mixed solutions are generated, which include the mixed breather-soliton molecule solution by the module resonance of the wave number and partial velocity resonance,the mixed lump-soliton molecule solution obtained by partial velocity resonance and partial long wave limits, and the mixed solutions composed of soliton molecules(asymmetric solitons), lump waves, and breather waves. Some plots are presented to clearly illustrate the dynamic features of these solutions.  相似文献   

8.
The soliton solutions for the nonisospeetral BKP equation are derived through Hirota method and Pfaffian technique. We also derive the bilinear Baeklund transformations for the isospectral and nonisospeetral BKP equation and find solutions with the help of the obtained bilinear Baeklund transformations.  相似文献   

9.
Under investigation in this paper is an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma. Lax pair, bilinear forms, and bilinear Bäcklund transformations are derived. Based on the bilinear forms, the first-, second-, and third-order nonautonomous soliton solutions are derived. Propagation and interaction of the nonautonomous solitons are investigated and influence of the variable coefficients is also discussed: Amplitude of the first-order nonautonomous soliton is determined by the spectral parameter and perturbed factor; there exist two kinds of the solitons, namely the elevation and depression solitons, depending on the sign of the spectral parameter; the background where the nonautonomous soliton exists is influenced by the perturbed factor and external force coefficient; breather solutions can be constructed under the conjugate condition, and period of the breather is related to the dispersive and nonuniform coefficients.  相似文献   

10.
Jing Wang 《中国物理 B》2022,31(10):100502-100502
We investigate a (2+1)-dimensional shallow water wave equation and describe its nonlinear dynamical behaviors in physics. Based on the N-soliton solutions, the higher-order fissionable and fusionable waves, fissionable or fusionable waves mixed with soliton molecular and breather waves can be obtained by various constraints of special parameters. At the same time, by the long wave limit method, the interaction waves between fissionable or fusionable waves with higher-order lumps are acquired. Combined with the dynamic figures of the waves, the properties of the solution are deeply studied to reveal the physical significance of the waves.  相似文献   

11.
In this paper, we first obtain a bilinear form with small perturbation u_0 for a generalized(3+1)-dimensional nonlinear wave equation in liquid with gas bubbles. Based on that, a new bilinear B?cklund transformation which consists of four bilinear equations and involves seven arbitrary parameters is constructed. After that, by applying a new symbolic computation method, we construct the higher order rogue waves with controllable center to the generalized(3+1)-dimensional nonlinear wave equation. The rogue waves present new structure, which contain two free parametersα and β. The dynamic properties of the higher order rogue waves are demonstrated graphically. The graphs tell that the parameters α and β can control the center of the rogue waves.  相似文献   

12.
In this paper,the bilinear form of a generalized Kadomtsev-Petviashvili equation is obtained by applying the binary Bell polynomials.The N-soliton solution and one periodic wave solution are presented by use of the Hirota direct method and the Riemann theta function,respectively.And then the asymptotic analysis demonstrates one periodic wave solution can be reduced to one soliton solution.In the end,the bilinear Bcklund transformations are derived.  相似文献   

13.
Xi-zhong Liu 《中国物理 B》2022,31(5):50201-050201
A nonlocal Boussinesq equation is deduced from the local one by using consistent correlated bang method. To study various exact solutions of the nonlocal Boussinesq equation, it is converted into two local equations which contain the local Boussinesq equation. From the N-soliton solutions of the local Boussinesq equation, the N-soliton solutions of the nonlocal Boussinesq equation are obtained, among which the (N=2,3,4)-soliton solutions are analyzed with graphs. Some periodic and traveling solutions of the nonlocal Boussinesq equation are derived directly from the known solutions of the local Boussinesq equation. Symmetry reduction solutions of the nonlocal Boussinesq equation are also obtained by using the classical Lie symmetry method.  相似文献   

14.
The positive extended KdV equation with self-consistent sources (eKdV+ ESCSs) is firstly presented and its related linear auxiliary equation is derived. The generalized binary Darboux transformation (DT) is applied to construct some new solutions of the eKdV+ ESCSs such as N-soliton solution, N-double pole solution and nonsingular N-positon solution. The properties of these solutions are analyzed. Moreover, the interaction of two solitons is discussed in detail.  相似文献   

15.
In oceanography, acoustics and hydrodynamics, people pay attention to the Burgers-type equations for different wave processes, one of which is an extended coupled (2+1)-dimensional Burgers system hereby under investigation. Based on the scaling transformation, Bell polynomials, Hirota operators and symbolic computation, we structure out two hetero-Bäcklund transformations, each of which to a solvable linear partial differential equation, and construct two sets of the bilinear forms, with the relevant one- and two-soliton solutions. Results rely on the coefficients in the original system.  相似文献   

16.
Yi Zhang  Jibin Li  Yi-Neng Lv 《Annals of Physics》2008,323(12):3059-3064
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is investigated. With the help of symbolic computation, the N-soliton solution is derived through the Hirota method. Then the bilinear Bäcklund transformations and Lax pairs are presented. At last, we show some interactions of solitary waves.  相似文献   

17.
This paper presents an analytical investigation of the propagation of internal solitary waves in the ocean of finite depth. Using the multi-scale analysis and reduced perturbation methods, the integrodifferential equation is derived, which is called the intermediate long wave(ILW) equation and can describe the amplitude of internal solitary waves. It can reduce to the Benjamin–Ono equation in the deep-water limit, and to the Kd V equation in the shallow-water limit. Little attention has been paid to the features of integro-differential equations, especially for their conservation laws. Here,based on Hirota bilinear method, B?cklund transformations in bilinear form of ILW equation are derived and infinite number of conservation laws are given. Finally, we analyze the fission phenomenon of internal solitary waves theoretically and verify it through numerical simulation. All of these have potential value for the further research on ocean internal solitary waves.  相似文献   

18.
According to the N-soliton solution derived from Hirota’s bilinear method, higher-order smooth positons and breather positons are obtained efficiently through an ingenious limit approach. This paper takes the Sine-Gordon equation as an example to introduce how to utilize this technique to generate these higher-order smooth positons and breather positons in detail. The dynamical behaviors of smooth positons and breather positons are presented by some figures. During the procedure of deduction, the approach mentioned has the strengths of concision and celerity. In terms of feasibility and practicability, this approach can be exploited widely to study higher-order smooth positons and breather positons of other integrable systems.  相似文献   

19.
In this work, we study a generalized double dispersion Boussinesq equation that plays a significant role in fluid mechanics, scientific fields, and ocean engineering. This equation will be reduced to the Korteweg–de Vries equation via using the perturbation analysis. We derive the corresponding vectors, symmetry reduction and explicit solutions for this equation. We readily obtain B?cklund transformation associated with truncated Painlevéexpansion. We also examine the related conservation laws of this equation via using the multiplier method. Moreover, we investigate the reciprocal B?cklund transformations of the derived conservation laws for the first time.  相似文献   

20.
Bäcklund transformations and heat equation are used to find several families of explicit and exact solutions for the well-known Whitham-Broer-Kaup equations in shallow water and Kupershmidt equations. In result, multi-soliton solutions, rational fraction solutions and soliton-like solutions are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号