首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
2.
Multi-stage fracturing is the current preferred method of completion of horizontal wells in unconventional hydrocarbon reservoirs. Its core component consists in simultaneously initiating and propagating an array of hydraulic fractures. We develop a numerical model for the initiation and growth of an array of parallel radial hydraulic fractures. The solution accounts for fracture growth, coupling between elastic deformation and fluid flow in the fractures, elastic stress interactions between fractures and fluid flow in the wellbore. We also take into account the presence of a local pressure drop (function of the entering flow rate) at the connection between the well and the fracture, i.e., a choke-like effect due to current well completion practices, also referred to as entry friction. The partitioning of the fluid into the different fractures at any given time is part of the solution and is a critical indicator of simultaneous (balanced fluid partitioning) versus preferential growth. We validate our numerical model against reference solutions and a laboratory experiment for the initiation and growth of a single radial hydraulic fracture. We then investigate the impact of stress interaction on preferential growth of a subset of fractures in the array. Our results show that a sufficiently large local entry friction provides a strong feedback in the system and thus can counteract elastic stress interaction between fractures, thereby ensuring simultaneous growth. We propose a dimensionless number capturing the competition between stress interaction and local entry friction. This dimensionless number is a function of rock properties, fracture spacing and injection parameters. We verify that it captures the transition from the case of simultaneous growth (entry friction larger than interaction stress) to the case of preferential growth of some fractures (interaction stress larger than entry friction). We also discuss the implication of these results for multi-stage fracturing engineering practices.  相似文献   

3.
We study possible steady states of an infinitely long tube made of a hyperelastic membrane and conveying either an inviscid, or a viscous fluid with power-law rheology. The tube model is geometrically and physically nonlinear; the fluid model is limited to smooth changes in the tube’s radius. For the inviscid case, we analyse the tube’s stretch and flow velocity range at which standing solitary waves of both the swelling and the necking type exist. For the viscous case, we first analyse the tube’s upstream and downstream limit states that are balanced by infinitely growing upstream (and decreasing downstream) fluid pressure and axial stress caused by fluid viscosity. Then we investigate conditions that can connect these limit states by a single solution. We show that such a solution exists only for sufficiently small flow speeds and that it has a form of a kink wave; solitary waves do not exist. For the case of a semi-infinite tube (infinite either upstream or downstream), there exist both kink and solitary wave solutions. For finite-length tubes, there exist solutions of any kind, i.e. in the form of pieces of kink waves, solitary waves, and periodic waves.  相似文献   

4.
一般各向异性单侧接触界面上波的反射和折射   总被引:7,自引:0,他引:7  
于桂兰  汪越胜  李楠 《力学学报》2003,35(5):561-568
研究简谐弹性波在一般各向异性介质单侧接触界面上的反射和折射问题.利用Fouier分析方法将非线性Coulomb摩擦接触边界波动问题化为一组代数方程.给出了确定局部分离、滑移和粘着区的思路和方法及各区域的解;讨论了出现界面局部分离和滑移的条件.对特定材料组合情况进行了详细数值计算,给出了界面力、相对滑移速度、张开位移、高频谐波的反射折射系数等特征参量;考察了平面和反平面波动的耦合及整体滑移等.其中关于高频谐波的结果可对已有实验结果给出很好的定性解释.在大多数情况下,即使对摩擦系数无穷大的粘滞接触界面,分离区端部也总是存在一个很小的滑移区。  相似文献   

5.
A standard conservation form is derived in this paper. The hyperbolicity of Helbing’s fluid dynamic traffic flow model is proved, which is essential to the general analytical and numerical study of this model. On the basis of this conservation form, a local discontinuous Galerkin scheme is designed to solve the resulting system efficiently. The evolution of an unstable equilibrium traffic state leading to a stable stop-and-go traveling wave is simulated. This simulation also verifies that the model is truly improved by the introduction of the modified diffusion coefficients, and thus helps to protect vehicles from collisions and avoide the appearance of the extremely large density.  相似文献   

6.
In this paper, a hybrid scheme, Fluid–Fluid–Elastic Structure (FFES) model was developed in the time domain to address the wave breaking impact on the structure. The model is developed based on the partitioned approach with different governing equations that describe various regions of the model domain. The fluid–fluid model denotes that two different fluid models were used to describe fluid in the actual physical domain. The method is a physics-based approximation to reduce the computational time, i.e. in the far-field inviscid fluid (fully nonlinear potential flow theory model), and near to the structure, viscous fluid (Navier Stokes model) is used. The coupled model then interacts with the elastic structure (based on Euler–Bernoulli beam theory). The system of equations is strongly coupled both in space and time. The Fluid–Fluid coupling uses an implicit predictor–corrector scheme, and the fluid–structure coupling works based on an iterative scheme. This approach makes the method more robust and for future extension. Three different possibilities for introducing the coupling was identified and implemented. The model was validated against results from the analytical solution and literature. The method proposed is a reliable, robust, and efficient alternative for simulating fluid–structure interaction problems.  相似文献   

7.
8.
Stretching experiments on single DNA molecules indicate that, counterintuitive to expectations, DNA overwinds when stretched and, at large forces, undergoes a transition into an overstretched form indicated by a plateau on the force–displacement diagrams. It is believed that these effects are the result of non-linearities in the elastic response of DNA. We use a discrete, base pair level model to simulate the behavior of short DNA molecules, taking into account the sequence dependent physical properties of DNA alongside with the coupling between the kinematical step parameters, yet retaining the quadratic form of local elastic energy function. By constructing bifurcation diagrams of equilibrium configurations and studying the dependence on base pair combinations we show that the quadratic model is capable of explaining the overtwisting as a result of coupling between modes of deformation and overstretching as a result of shear instability.  相似文献   

9.
爆破孔壁压力峰值是进行非流固耦合爆破动力响应分析的重要参数。针对轮廓爆破孔壁压力峰值的计算方法问题,理论分析了爆炸冲击波与弹性壁面的相互作用,推导了空气冲击波与弹性壁碰撞后压力增大倍数的理论解,并采用流固耦合动力有限元数值分析方法,研究了3种岩体介质、2种轮廓爆破常用炸药、5种常用不耦合系数、2种轴向装药系数工况下轮廓爆破的冲击波碰撞压力增大倍数和炮孔壁压力峰值。结果表明:轮廓爆破时,爆炸冲击波与孔壁碰撞后压力增大倍数并不是常值,与炸药特性、孔壁介质条件、不耦合装药系数等因素相关,孔壁压力峰值也与上述因素密切相关。基于模拟的孔壁压力峰值数据的统计分析,并结合理论推导成果及常用爆破孔壁压力峰值计算形式,提出了一种新的轮廓爆破孔壁压力峰值计算方法。  相似文献   

10.
刘凯欣  刘颖 《力学学报》2003,35(4):469-473
为了深入研究液饱和多孔介质中应力波的传播,提出了三维两相细观计算模型.基于此模型。应用Galerkin余量法并计及流-固耦合界面的耦合效应,利用直接耦合的技术,开发了三维流-固混合显式动力有限元计算程序.在此基础上对冲击载荷作用下液饱和多孔介质中三维应力波的传播现象进行了数值模拟,并详细讨论了孔隙率,孔隙形状等因素对应力波传播主导波形的影响.  相似文献   

11.
针对爆炸冲击波与建筑物结构相互作用过程,分析了冲击波与结构碎块作用机理,发展了一种能够模拟建筑物结构破坏及冲击波传播过程的计算模型和方法。采用建筑物结构工程毁伤载荷作为判据,处理结构在冲击波作用下的破坏问题;利用流固耦合界面算法处理结构运动引起的泄压效应,利用“虚拟网格通气技术”处理结构碎块对冲击波的阻碍作用,模拟了冲击波作用下典型建筑物的毁伤过程及冲击波传播过程。结果表明,该模型在模拟冲击波与结构的作用过程中,压力计算结果与非结构动网格模拟结果符合较好;在典型建筑物毁伤过程的数值模拟中,计算得到的建筑物毁伤效果和冲击波超压分布与建筑物物理毁伤特点符合。  相似文献   

12.
Conclusion The above survey of different studies and analysis of results obtained widiin the framework of linearized three-dimensional theory show that use of the given model makes it possible to account for fluid viscosity and initial stresses in elastic bodies. Both of these factors play a significant role in actual media. The model also permits determination of the effect of fluid viscosity and initial stresses on the wave processes in hydroelastic systems. The use of an approach based on representations of general solutions of linearized problems of aerohydroelasticity for bodies with uniform initial strains and a compressible viscous fluid makes it possible to obtain dispersion relations in a general form diat is invariant relative to different types of elastic potential and valid for arbitrary compressible and incompressible materials. The approach also allows researchers to study the main classes of problems encountered in practice, conduct numerical experiments, and use the results to find new properties, laws, and mechanical effects that are characteristic of the investigated wave processes and reflect the mutual effects of the fields of initial and dynamic stresses, as well as the interaction of elastic bodies with viscous fluids. Translated from Prikladnaya Mekhanika, Vol. 33, No. 6, pp. 3–39, June, 1997.  相似文献   

13.
In the oil industry, dynamic spontaneous imbibition plays an important role in several flow processes in porous media. A numerical approach is developed to simulate dynamic spontaneous imbibition with variable inlet saturation and interfacial coupling. The inclusion of interfacial coupling effects invalidates the assumption that the interfaces (fluid/fluid and fluid/solid) act in the same way. The one-dimensional numerical simulation model is developed using a Lagrangian formulation discretized in time and saturation. The solution of the partial differential equations utilizes an iteration process that includes two material balance criteria to ensure the validity of the variable inlet saturation. Furthermore, an error analysis, the validation of the model and a sensitivity study on the optimal number of time steps and saturation grid cells are undertaken. The numerical simulation solution represents an accurate approach to investigate the effect of fluid and rock properties on dynamic spontaneous imbibition.  相似文献   

14.
By finding a parabola solution connecting two equilibrium points of a planar dynamical system,the existence of the kink wave solution for 6 classes of nonlinear wave equations is shown.Some exact explicit parametric representations of kink wave solutions are given.Explicit parameter conditions to guarantee the existence of kink wave solutions are determined.  相似文献   

15.
高韧性管道动态断裂的气体减压模式和材料韧性研究   总被引:5,自引:0,他引:5  
由小川  庄茁 《力学学报》2003,35(5):615-622
天然气管道上动态裂纹扩展包含气体、结构和断裂的相互作用.因此,分析射流场分布特性及其与管壁开裂变形的相互作用是数值模拟过程的关键问题.随着钢管韧性等级的迅速提升和气体压力的不断提高,原有的经验公式乃至算法多数不再适用,亟需通过理论、试验和数值模拟给出新的扩展与止裂判据,以控制裂纹在管道上扩展的速度和距离.本文通过一系列的韧性试验校正了现行的管材韧性判定办法,并对不同工况下的裂纹动态扩展以及超声速射流场进行了数值仿真,以建立一套工程适用的评价体系。  相似文献   

16.
具有内域的双层加筋圆柱壳动响应特性   总被引:2,自引:0,他引:2  
肖巍  张阿漫  汪玉 《力学学报》2014,46(1):120-127
采用外域双渐近法模拟外部流体域,内域双渐近法模拟内部流体域,采用非线性有限元软件ABAQUS 模拟结构,建立流固耦合数值模型并验证了其有效性. 利用建立的数值模型研究内部流体对双层加筋圆柱壳动响应的影响. 研究结果表明:一阶双渐近的解在中后期振荡周期变短、幅值变小,而二阶双渐近的解与解析解吻合良好;内部流体的存在减弱了双层加筋圆柱壳外壳的塑性变形,对其内壳塑性变形的影响较小;内部流体的存在减弱了双层加筋圆柱壳的速度响应.  相似文献   

17.
肖巍  张阿漫  汪玉 《力学学报》2014,46(1):120-127
采用外域双渐近法模拟外部流体域,内域双渐近法模拟内部流体域,采用非线性有限元软件ABAQUS 模拟结构,建立流固耦合数值模型并验证了其有效性. 利用建立的数值模型研究内部流体对双层加筋圆柱壳动响应的影响. 研究结果表明:一阶双渐近的解在中后期振荡周期变短、幅值变小,而二阶双渐近的解与解析解吻合良好;内部流体的存在减弱了双层加筋圆柱壳外壳的塑性变形,对其内壳塑性变形的影响较小;内部流体的存在减弱了双层加筋圆柱壳的速度响应.   相似文献   

18.
Coupling interface between computational fluid dynamics (CFD) and computational structural dynamics (CSD) is required to provide exchange of information for the simulation of fluid–structure interaction (FSI) phenomena. Accuracy and consistency of information exchanged through coupling interface between the independent CFD and CSD solvers plays a central role in the simulation and prediction of FSI phenomenon, like flutter. In this paper validation of an implemented coupling interface methodology is presented for subsonic, transonic and near supersonic mach regime. The test case chosen for this purpose is the flutter of AGARD445.6 standard I‐wing weakened model configuration for subsonic to near transonic flow regime. Gambit® and Fluent® are used for CFD grid generation and solution of fluid dynamic equations, respectively. CSD modeling and simulation are provided by numerical time integration of modal dynamic equations derived through the finite element modeling in ANSYS® environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In order to clarify the developmental mechanism of the local plastic buckling and the interaction between axial wave and buckling deformation in an axially impacted slender-bar, the non-linear dynamic equations in the incremental form are derived and solved by use of the finite difference method, with the axial wave front treated as a moving boundary. The initial local-buckling deflection given by the characteristic-value analysis is used as the initial condition of the solution of the equations, instead of the initial imperfection that is assumed in literatures. It is found that the initial buckling deflection with one half-wave, occurring near the impacted end, develops into the higher post-buckling mode with several half-waves, as the axial compression waves propagate forward. The numerical results show that no strain reversal occurs at the early stage of post-buckling process, and the solution corresponding to the tangent-modulus theory is valid for the dynamic plastic post-buckling response of the bar at this stage. The theoretical results are in good agreement with the experimental results reported in the literature.  相似文献   

20.
H. Li  G. Ben-Dor 《Shock Waves》1995,5(1-2):59-73
The shock wave reflection phenomenon in pseudosteady flows was reconsidered by replacing the Law-Glass assumption by models accounting for the interaction of the shock wave reflection and the shock induced flow deflection processes. As a result, the analytical predictions of the location of the kink of a transitional-Mach reflection and the second triple point of a double-Mach reflection improved tremendously. It has also been proven that based on gas dynamic considerations a triple-Mach reflection wave configuration is physically impossible. In addition, the transition lines between the various reflection configurations were also found to better agree with the experimental results when they were calculated using the proposed models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号