首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin-crossover compounds are becoming increasingly popular for device and sensor applications, and in soft materials, that make use of their switchable colour, paramagnetism and conductivity. The de novo design of new solid spin-crossover compounds with pre-defined switching properties is desirable for application purposes. This challenging problem of crystal engineering requires an understanding of how the temperature and cooperativity of a spin-transition are influenced by the structure of the bulk material. Towards that end, this critical review presents a survey of molecular spin-crossover compounds with good availability of crystallographic data. A picture is emerging that changes in molecular shape between the high- and low-spin states, and the ability of a lattice to accommodate such changes, can play an important role in determining the existence and the cooperativity of a thermal spin-transition in the solid state (198 references).  相似文献   

2.
单分子自旋态检测与可逆调控是目前物理、化学及信息技术等领域的研究热点.本文综述了扫描隧道显微镜在该领域的研究进展,着重论述了酞菁类磁性分子在金属单晶表面或绝缘层薄膜上磁性的检测;自旋交叉配合物分子自旋双稳态的检测与可逆调控;单分子磁体的表面制备及输运性质的检测.  相似文献   

3.
层状过渡金属硫代亚磷酸盐(MPS3)及其夹层物由于所表现出的特殊的固体物理化学性质而受到关注。本文将主要介绍层状过渡金属硫代亚磷酸盐及其夹层物的合成、结构及固体物理性质等方面的研究状况及进展。  相似文献   

4.
The magnetic properties of many magnetic materials can be controlled by external stimuli. The principal focus here is on the thermal, photochemical, electrochemical, and chemical control of phase transitions that involve changes in magnetization. The molecular compounds described herein range from metal complexes, through pure organic compounds to composite materials. Most of the Review is devoted to the properties of valence-tautomeric compounds, molecular magnets, and spin-crossover complexes, which could find future application in memory devices or optical switches.  相似文献   

5.
The current great interest in preparing functional metal-organic materials is inevitably associated with tremendous research efforts dedicated to the design and synthesis of new families of sophisticated multi-nucleating ligands. In this context, the N-donor triazole and tetrazole rings represent two categories of ligands that are increasingly used, most likely as the result of the recent dramatic development of “click chemistry” and Zeolitic Imidazolate Frameworks (ZIFs). Thus, azole-based complexes have found numerous applications in coordination chemistry.In the present review, we focus on the utilization of 1,2,3-triazole, 1,2,4-triazole and tetrazole ligands to create coordination polymers, metal complexes and spin-crossover compounds, reported to the end of 2009. In the first instance, we present a compendium of all the relevant ligands that have been employed to generate coordination polymers and Metal-Organic Frameworks (MOFs). Due to the huge amount of reported MOFs and coordination polymers bearing these azole rings, three representative examples for each category (therefore nine in total) are described in detail. The second section is devoted to the use of the bridging abilities of these azole ligands to prepare metal complexes (containing at least two metal centers). Given the large number and the great structural diversity of the polynuclear compounds found in the literature, these have been grouped according to their nuclearity. Finally, in the last section, the triazole- and tetrazole-containing coordination compounds exhibiting spin-crossover properties are presented.  相似文献   

6.
Ruthenium complexes with polypyridine ligands are very popular choices for applications in photophysics and photochemistry, for example, in lighting, sensing, solar cells, and photoredox catalysis. There is a long-standing interest in replacing ruthenium with iron because ruthenium is rare and expensive, whereas iron is comparatively abundant and cheap. However, it is very difficult to obtain iron complexes with an electronic structure similar to that of ruthenium(II) polypyridines. The latter typically have a long-lived excited state with pronounced charge-transfer character between the ruthenium metal and ligands. These metal-to-ligand charge-transfer (MLCT) excited states can be luminescent, with typical lifetimes in the range of 100 to 1000 ns, and the electrochemical properties are drastically altered during this time. These properties make ruthenium(II) polypyridine complexes so well suited for the abovementioned applications. In iron(II) complexes, the MLCT states can be deactivated extremely rapidly (ca. 50 fs) by energetically lower lying metal-centered excited states. Luminescence is then no longer emitted, and the MLCT lifetimes become much too short for most applications. Recently, there has been substantial progress on extending the lifetimes of MLCT states in iron(II) complexes, and the first examples of luminescent iron complexes have been reported. Interestingly, these are iron(III) complexes with a completely different electronic structure than that of commonly targeted iron(II) compounds, and this could mark the beginning of a paradigm change in research into photoactive earth-abundant metal complexes. After outlining some of the fundamental challenges, key strategies used so far to enhance the photophysical and photochemical properties of iron complexes are discussed and recent conceptual breakthroughs are highlighted in this invited Concept article.  相似文献   

7.
Organometallic conjugated complexes have become an important type of stimuli-responsive materials because of their appealing electrochemical properties and rich photonic, electronic, and magnetic properties. They are potentially useful in a wide range of applications such as molecular wires, molecular switches, molecular machines, molecular memory, and optoelectronic detections. This review outlines the recent progress on the molecular design of carbometalated ruthenium and osmium complexes and their applications as redox-responsive materials with visible and near-infrared (NIR) absorptions and electron paramagnetic resonance as readout signals. Three molecule systems are introduced, including the symmetric diruthenium complexes, metal-amine conjugated bi-center system, and multi-center redox-active organometallic compounds. Because of the presence of a metal-carbon bond on each metal component and strong electronic coupling between redox sites, these compounds display multiple reversible redox processes at low potentials and each redox state possesses significantly different physical and chemical properties. Using electrochemical potentials as input signals, these materials show reversible NIR absorption spectral changes, making them potentially useful in NIR electrochromism and information storage.  相似文献   

8.
9.
The occurrence of spin-crossover (SCO) highly depends on external influences, i.e. temperature, pressure, light irradiation or magnetic field, this electronic switching phenomenon is accompanied by drastic changes in magnetic and optical properties, dielectric constants, colour and structures. Thus, SCO materials are particularly attractive for potential applications in molecular sensing, switching, data storage, display, and other electronic devices at nanometric scale. Polymorphism is widely encountered in the studies of crystallization, phase transition, materials synthesis, biomineralization, and in the manufacture of drugs. Because different crystal forms of the same substance can possess very different properties and behave as different materials, so they are particularly meaningful for investigating SCO phenomena. Studying polymorphism of SCO compounds is therefore important for better understanding the structural factors contributing to spin transition and the structure-function relationship. This critical review is aimed to provide general readers with a comprehensive view of polymorphism in SCO systems. The article is generally structured according to specific metal ions and the dimensionality of compounds in the field. This paper is addressed to readers who are interested in multifunctional materials and tuning magnetic properties through supramolecular chemistry principles (129 references).  相似文献   

10.
The molecular design of spin-crossover complexes relies on controlling the spin state of a transition metal ion by proper chemical modifications of the ligands. Herein, the first N,N’-disubstituted 2,6-bis(pyrazol-3-yl)pyridines (3-bpp) are reported that, against the common wisdom, induce a spin-crossover in otherwise high-spin iron(II) complexes by increasing the steric demand of a bulky substituent, an ortho-functionalized phenyl group. As N,N’-disubstituted 3-bpp complexes have no pendant NH groups that make their spin state extremely sensitive to the environment, the proposed ligand design, which may be applicable to isomeric 1-bpp or other families of popular bi-, tri- and higher denticity ligands, opens the way for their molecular design as spin-crossover compounds for future breakthrough applications.  相似文献   

11.
A comprehensive study of the magnetic and photomagnetic behaviors of cis-[Fe(picen)(NCS)(2) ] (picen = N,N'-bis(2-pyridylmethyl)1,2-ethanediamine) was carried out. The spin-equilibration was extremely slow in the vicinity of the thermal spin-transition. When the cooling speed was slower than 0.1?K min(-1), this complex was characterized by an abrupt thermal spin-transition at about 70?K. Measurement of the kinetics in the range 60-70?K was performed to approach the quasi-static hysteresis loop. At low temperatures, the metastable HS state was quenched by a rapid freezing process and the critical T(TIESST) temperature, which was associated with the thermally induced excited spin-state-trapping (TIESST) effect, was measured. At 10?K, this complex also exhibited the well-known light-induced excited spin-state-trapping (LIESST) effect and the T(LIESST) temperature was determined. The kinetics of the metastable HS states, which were generated from the freezing effect and from the light-induced excitation, was studied. Single-crystal X-ray diffraction as a function of speed-cooling and light conditions at 30?K revealed the mechanism of the spin-crossover in this complex as well as some direct relationships between its structural properties and its spin state. This spin-crossover (SCO) material represents a fascinating example in which the metastability of the HS state is in close vicinity to the thermal spin-transition region. Moreover, it is a beautiful example of a complex in which the metastable HS states can be generated, and then compared, either by the freezing effect or by the LIESST effect.  相似文献   

12.
The iron(II) compounds [Fe(3Cn-L)2(NCS)2] (n = 6 (1), n = 8 (2), n = 10 (3), n = 12 (4), n = 14 (5), n = 16 (6), n = 18 (7), n = 20 (8), and n = 22 (9)) were synthesized and their physical properties characterized by polarizing optical microscopy, differential scanning calorimetry, and powder X-ray analysis, where 3Cn-L denotes bidentate Schiff-base ligands formed from the corresponding aniline derivatives and pyridine-2-carboxyaldehyde. The iron(II) compounds 4-8 exhibited crystal to liquid-crystal transitions at 318, 334, 345, 338, and 347 K, respectively. Variable-temperature magnetic susceptibility measurements revealed that the compounds 1-9 exhibit spin-crossover behavior between the high-spin and low-spin states and a photoinduced spin transition from a low-spin state to a metastable high-spin state. Therefore, the iron(II) compounds 4-8 can undergo spin-crossover and photoinduced spin transition as well as have liquid-crystal properties all in a single molecule. Compounds with multifunctions are important in the development of molecular switches and optical materials.  相似文献   

13.
The development of molecular materials with novel functionality offers promise for technological innovation. Switchable molecules that incorporate redox-active components are enticing candidate compounds due to their potential for electronic manipulation. Lanthanoid metals are most prevalent in their trivalent state and usually redox-activity in lanthanoid complexes is restricted to the ligand. The unique electronic and physical properties of lanthanoid ions have been exploited for various applications, including in magnetic and luminescent materials as well as in catalysis. Lanthanoid complexes are also promising for applications reliant on switchability, where the physical properties can be modulated by varying the oxidation state of a coordinated ligand. Lanthanoid-based redox activity is also possible, encompassing both divalent and tetravalent metal oxidation states. Thus, utilization of redox-active lanthanoid metals offers an attractive opportunity to further expand the capabilities of molecular materials. This review surveys both ligand and lanthanoid centered redox-activity in pre-existing molecular systems, including tuning of lanthanoid magnetic and photophysical properties by modulating the redox states of coordinated ligands. Ultimately the combination of redox-activity at both ligands and metal centers in the same molecule can afford novel electronic structures and physical properties, including multiconfigurational electronic states and valence tautomerism. Further targeted exploration of these features is clearly warranted, both to enhance understanding of the underlying fundamental chemistry, and for the generation of a potentially important new class of molecular material.  相似文献   

14.
Molecular magnets Cu(hfac)(2)L(R) (hfac = hexafluoroacetylacetonate) called "breathing crystals" exhibit thermally and light-induced magnetic anomalies very similar to iron(II) spin-crossover compounds. They are physically different systems, because the spin-state switching occurs in exchange-coupled nitroxide-copper(II)-nitroxide clusters, in contrast to classical spin crossover in d(4)-d(7) transition ions. Despite this difference, numerous similarities in physical behavior of these two types of compounds have been observed, including light-induced excited spin-state trapping (LIESST) phenomenon recently found in the Cu(hfac)(2)L(R) family. Similar to iron(II) spin-crossover compounds, the excited spin state in breathing crystals relaxes to the ground state on the time scale of hours at cryogenic temperatures. In this work, we investigate this slow relaxation in a series of breathing crystals using electron paramagnetic resonance (EPR). Three selected compounds represent the cases of relatively strong or weak cooperativity and different temperature of thermal spin transition. They all were studied in a neat magnetically concentrated form; however, sigmoidal self-accelerating relaxation was not observed. On the contrary, the relaxation shows pronounced self-decelerating character for all studied compounds. Relaxation curves and their temperature dependence could be fitted assuming a tunneling process and broad distribution of effective activation energies in these 1D materials. A number of additional experimental and theoretical arguments support the distribution-based model. Because self-decelerating relaxation behavior was also found in 1D polymeric iron(II) spin-crossover compounds previously, we compared general relaxation trends and mechanisms in these two types of systems. Both similarities and differences of copper-nitroxide-based breathing crystals as compared to iron(II) spin-crossover compounds make future research of light-induced phenomena in these new types of spin-crossover-like systems topical in the field of molecule-based magnetic switches.  相似文献   

15.
Photogenerated multi-spin systems hold great promise for a range of technological applications in various fields, including molecular spintronics and artificial photosynthesis. However, the further development of these applications, via targeted design of materials with specific magnetic properties, currently still suffers from a lack of understanding of the factors influencing the underlying excited state dynamics and mechanisms on a molecular level. In particular, systematic studies, making use of different techniques to obtain complementary information, are largely missing. This work investigates the photophysics and magnetic properties of a series of three covalently-linked porphyrin-trityl compounds, bridged by a phenyl spacer. By combining the results from femtosecond transient absorption and electron paramagnetic resonance spectroscopies, we determine the efficiencies of the competing excited state reaction pathways and characterise the magnetic properties of the individual spin states, formed by the interaction between the chromophore triplet and the stable radical. The differences observed for the three investigated compounds are rationalised in the context of available theoretical models and the implications of the results of this study for the design of a molecular system with an improved intersystem crossing efficiency are discussed.  相似文献   

16.
Ground- and excited-state magnetic properties of recently characterized pi-conjugated photomagnetic organic molecules are analyzed by the means of density functional theory (DFT). The systems under investigation are made up of an anthracene (An) unit primarily acting as a photosensitizer (P), one or two iminonitroxyl (IN) or oxoverdazyl (OV) stable organic radical(s) as the dangling spin carrier(s) (SC), and intervening phenylene connector(s) (B). The magnetic behavior of these multicomponent systems, represented here by the Heisenberg-Dirac magnetic exchange coupling (J), as well as the EPR observables (g tensors and isotropic A values), are accurately modeled and rationalized by using our DFT approach. As the capability to quantitatively assess intramolecular exchange coupling J in the excited state makes it possible to undertake rational optimization of photomagnetic systems, DFT was subsequently used to model new compounds exhibiting different connection schemes for their functional components (P, B, SC). We show in the present work that it is worthwhile considering the triplet state of anthracene, that is, P when promoted in its lowest photoexcited state, as a full magnetic site in the same capacity as the remote SCs. This framework allows us to accurately account for the interplay between transient ((3)An) and persistent (IN, OV) spin carriers, which magnetically couple according to a sole polarization mechanism essentially supported by phenyl connector(s). From our theoretical investigations of photoinduced spin alignment, some general rules are proposed and validated. Relying on the analysis of spin-density maps, they allow us to predict the magnetic behavior of purely organic magnets in both the ground and the excited states. Finally, the notion of photomagnetic molecular devices (PMMDs) is derived and potential application towards molecular spintronics disclosed.  相似文献   

17.
The field of molecular based magnetism is an active area of research directed toward the design of new magnetic materials. The idea is to introduce molecular strategies in magneto-chemistry. This can open completely new synthetic routes to materials with previously unknown physical properties. Spin carriers used within this approach range from purely organic radicals to metal complexes and organometallic compounds. The design of new magnetic materials with tailor-made properties requires a detailed knowledge about the interactions between possible spin carriers and the strategies necessary to achieve interactions in all three dimensions. The latter is closely related to the field of crystal engineering. Starting from introductory remarks to magnetochemistry the underlaying concepts for the design of magnetic materials on the basis of molecular compounds as well as new developments and possible applications are described.  相似文献   

18.
Room-temperature phosphorescence (RTP) emitters with ultralong lifetimes are emerging as attractive targets because of their potential applications in bioimaging, security, and other areas. But their development is limited by ambiguous mechanisms and poor understanding of the correlation of the molecular structure and RTP properties. Herein, different substituents on the 9,9-dimethylxanthene core (XCO) result in compounds with RTP lifetimes ranging from 52 to 601 ms, which are tunable by intermolecular interactions and molecular configurations. XCO-PiCl shows the most persistent RTP because of its reduced steric bulk and multiple sites of the 1-chloro-2-methylpropan-2-yl (PiCl) moiety for forming intermolecular interactions in the aggregated state. The substituent effects reported provide an efficient molecular design of organic RTP materials and establishes relationships among molecular structures, intermolecular interactions, and RTP properties.  相似文献   

19.
Light-induced spin-state switching is one of the most attractive properties of spin-crossover materials. In bulk, low-spin (LS) to high-spin (HS) conversion via the light-induced excited spin-state trapping (LIESST) effect may be achieved with a visible light, while the HS-to-LS one (reverse-LIESST) requires an excitation in the near-infrared range. Now, it is shown that those phenomena are strongly modified at the interface with a metal. Indeed, an anomalous spin conversion is presented from HS state to LS state under blue light illumination for FeII spin-crossover molecules that are in direct contact with metallic (111) single-crystal surfaces (copper, silver, and gold). To interpret this anomalous spin-state switching, a new mechanism is proposed for the spin conversion based on the light absorption by the substrate that can generate low energy valence photoelectrons promoting molecular vibrational excitations and subsequent spin-state switching at the molecule–metal interface.  相似文献   

20.
The relaxation of the metastable state of the spin-crossover compound [Fe(L)(2)](ClO(4))(2).H(2)O, with L = 2,6-bis(pyrazol-1-ylmethyl)pyridine, populated by the LIESST (light induced excited spin state trapping) effect, has been investigated by magnetic measurements. The time dependence of the relaxation curve at several temperatures, starting from different initial states, is in the shape of stretched exponentials, and the thermal variation of the photostationary state under constant photoexcitation is progressive and reversible. These features are satisfactorily modeled by considering noninteracting two-level systems with a distribution of activation energies. A suggested origin for the distribution is the conformational flexibility of the nonplanar heterocyclic ligands. The effect of the intensity distribution during the LIESST process is also accounted for in a simple way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号