首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Two polymeric pseudostationary phases, one an acrylamide polymer and the second a siloxane polymer, have been investigated for the separation of naphthalene-2,3-dicarboxaldehyde (NDA)-derivatized amino acids and small peptides. The dervatized amino acids were detected by UV absorbance and laser-induced fluorescence (LIF) detection. The polymers provided very high efficiency and good selectivity for the separation of the amino acids. The separation selectivity using the polymers was significantly different from that of SDS micelles, and there were subtle differences in selectivities between the polymers. Although very good detection limits were obtained with LIF detection, a significant background signal was observed when the polymers were not washed to remove fluorescent impurities. The polymers did not separate the peptides very well. It is postulated that the fixed covalent structure of the polymers prevents them from interacting strongly or efficiently with the peptides, which are large in relation to the analytes typically separated by electrokinetic chromatography using polymers.  相似文献   

2.
A robust and simple interface for microchip electrophoresis-mass spectrometry (MCE-MS) was developed using a spray nozzle connected to the exit of the separation channel of the microchip. The spray nozzle was attached to the microchip using a polyether ether ketone screw without adhesive, thus allowing easy replaced. Sample injection and electrophoretic separation was performed by control of the voltage only. The analysis of a few basic drugs was performed using the optimized MCE-MS system. The separation was improved by using a high-viscosity separation buffer and a spray nozzle with a small bore size. This system was also applied to the separation of peptides and protein-trypsin digests. Sample adsorption was minimized by adding acetonitrile to the separation buffer when using a quartz microchip.  相似文献   

3.
An interface design is presented that facilitates automated sample introduction into an electrokinetic microchip, without perturbing the liquids within the microfluidic device. The design utilizes an interface flow channel with a volume flow resistance that is 0.54-4.1 x 10(6) times lower than the volume flow resistance of the electrokinetic fluid manifold used for mixing, reaction, separation, and analysis. A channel, 300 microm deep, 1 mm wide and 15-20 mm long, was etched in glass substrates to create the sample introduction channel (SIC) for a manifold of electrokinetic flow channels in the range of 10-13 microm depth and 36-275 microm width. Volume flow rates of up to 1 mL/min were pumped through the SIC without perturbing the solutions within the electrokinetic channel manifold. Calculations support this observation, suggesting a leakage flow to electroosmotic flow ratio of 0.1:1% in the electrokinetic channels, arising from 66-700 microL/min pressure-driven flow rates in the SIC. Peak heights for capillary electrophoresis separations in the electrokinetic flow manifold showed no dependence on whether the SIC pump was on or off. On-chip mixing, reaction and separation of anti-ovalbumin and ovalbumin could be performed with good quantitative results, independent of the SIC pump operation. Reproducibility of injection performance, estimated from peak height variations, ranged from 1.5-4%, depending upon the device design and the sample composition.  相似文献   

4.
Microchip-based capillary electrochromatography using packed beds   总被引:1,自引:0,他引:1  
Integration of a packed column onto a microchip for performance of capillary electrochromatography (CEC) is described. The quartz device incorporated a cross-injector, and a double weir trapping design for formation of 1, 2 and 5 mm long CEC columns. Three fluorescent dyes were baseline-resolved with plate numbers of 330,(330,000 plates/m; height equivalent to a theoretical plate, H = 3.0 microm) for BODIPY 493/503, 360 (360,000 plates/m; H = 2.8 microm) for rhodamine 123 and 244 (244,000 plates/m; H = 4.1 microm) for acridine orange (AO) with 500 V applied on a 1 mm long column. The 2 mm column yielded approximately 1.8 times more theoretical plates than did the 1 mm column, when operated at the same flow rate. Van Deemter plots were obtained for the three column lengths, showing increased plate height for the 5 mm length. A 2 mm column gave peak height and area relative standard deviation (RSD) values of 2.5 and 3.3%, respectively, as averages for the three dyes (n = 15). The RSD for the dye retention times was 1% (n = 6) over one day, and 3% (n = 30) over five days. Indirect fluorescence detection of thiourea and of amino acids was possible using a neutral indicator dye (BODIPY 493/503), with a detection limit of 10 microM for amino acids.  相似文献   

5.
A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip CE separations. The PDMS devices used for the evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3?psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~ 100?pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure, and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1?Hz to > 2?Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4-cm-long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, little sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations for multiplexing CE separations and for sample-limited bioanalyses are discussed.  相似文献   

6.
Hirokawa T  Takayama Y  Arai A  Xu Z 《Electrophoresis》2008,29(9):1829-1835
Aiming to achieve high-performance analysis of DNA fragments using microchip electrophoresis, we developed a novel sample injection method, which was given the name of floating electrokinetic supercharging (FEKS). In the method, electrokinetic injection (EKI) and ITP preconcentration of samples was performed in a separation channel, connecting two reservoir ports (P3 and P4) on a cross-geometry microchip. At these two stages, side channels, crossing the separation channel, and their ports (P1 and P2) were electrically floated. After the ITP-stacked zones passed the cross-part, they were eluted for detection by using leading ions from P1 and P2 that enabled electrophoresis mode changing rapidly from ITP to zone electrophoresis (ZE). Possible sample leakage at the cross-part toward P1 and P2 was studied in detail on the basis of computer simulation using a CFD-ACE+ software and real experiments, through which it was validated that the analyte recovery to the separation channel was almost complete. The FEKS method successfully contributed to higher resolution and shorter analysis time of DNA fragments on the cross-microchip owing to more rapid switching from ITP status to ZE separation in comparison with our previous EKS procedure realized on a single-channel microchip. Without any degradation of resolution, the achieved LODs were on average ten times better than using conventional pinched injection.  相似文献   

7.
The research adopted a single-channel microchip as the probe, and focused electrokinetic injection combined with transient isotachophoresis preconcentration technique on capillary electrophoresis microchip to improve the analytical sensitivity of DNA fragments. The channel length, channel width and channel depth of the used microchip were 40.5 mm, and 110 and 50 μm, respectively. The separation was detected by CCD (charge-coupled device) (effective LENGTH=25 mm, 260 nm). A 1/100 diluted sample (0.2 mg/l of each DNA fragment) of commercially available stepladder DNA sample could be baseline separated in 120 s with S/N=2–5. Compared with conventional chip gel electrophoresis, the proposed method is ideally suited to improve the sensitivity of DNA analysis by chip electrophoresis.  相似文献   

8.
We have developed a new microfluidic chip capable of accurate metering, pneumatic sample injection, and subsequent electrophoretic separation. The pneumatic injection scheme, enabling us to introduce a solution without sampling bias unlike electrokinetic injection, is based upon the hydrophobicity and wettability of channel surfaces. An accurately metered solution of 10 nL could be injected by pneumatic pressure into a hydrophilic separation channel through Y-shaped hydrophobic valves, which consist of polydimethylsiloxane (PDMS) and fluorocarbon (FC) film layers. We demonstrated the successful pneumatic injection of a red ink solution into the separation channel as a proof of the concept. A mixture of fluorescein and dichlorofluorescein (DCF) could be baseline-separated using a single power source in microchip electrophoresis.  相似文献   

9.
On‐chip generation of pressure gradients via electrokinetic means can offer several advantages to microfluidic assay design and operation in a variety of applications. In this article, we describe a simple approach to realizing this capability by employing a polyacrylamide‐based gel structure fabricated within a fluid reservoir located at the terminating end of a microchannel. Application of an electric field across this membrane has been shown to block a majority of the electroosmotic flow generated within the open duct yielding a high pressure at the channel–membrane junction. Experiments show the realization of higher pressure‐driven velocities in an electric field‐free separation channel integrated to the micropump with this design compared to other similar micropumps described in the literature. In addition, the noted velocity was found to be less sensitive to the extent of Debye layer overlap in the channel network, and therefore more impressive when working with background electrolytes having higher ionic strengths. With the current system, pressure‐driven velocities up to 3.6 mm/s were realized in a 300‐nm‐deep separation channel applying a maximum voltage of 3 kV at a channel terminal. To demonstrate the separative performance of our device, a nanofluidic pressure‐driven ion‐chromatographic analysis was subsequently implemented that relied on the slower migration of cationic analytes relative to the neutral and anionic ones in the separation channel likely due to their strong electrostatic interaction with the channel surface charges. A mixture of amino acids was thus separated with resolutions greater than those reported by our group for a similar analysis previously.  相似文献   

10.
选择了L-精氨酸和L-苯丙氨酸为分离样品体系,根据电泳实验提出样品基本参数,通过模拟计算考察了进样管道宽度和进样时间对进样方差的贡献;根据分离度与分离长度拟合曲线确定电泳芯片的有效分离长度;对化学发光柱后衍生管道施加的夹流电压进行了模拟优化,得出氨基酸体系分离分析的电泳芯片设计方案和操作参数为:进样管道宽度为分离管道宽度的1/2,简单进样充样时间应大于5 s,分离管道有效分离长度为30 mm,衍生夹流比1.0~1.6。根据模拟优化结果提出了电泳芯片设计方案,采用整体浇注法制作带有柱后衍生反应器的PDMS电泳芯片,按照模拟计算提出的电压操作参数实现了精氨酸和苯丙氨酸样品体系的准确进样、芯片电泳分离和柱后衍生化学发光检测。电泳过程模拟结果和实验结果相结合,考察了柱后衍生对样品谱带展宽的影响,简单进样过程样品泄露引起的谱峰拖尾现象,并讨论了夹流进样法对减小进样方差和抑制样品泄露的贡献。  相似文献   

11.
The chiral separation of trimetoquinol hydrochloride, which is a bronchodilator (Inolin), and three related compounds by micellar electrokinetic chromatography was investigated using a bile salt as a chiral surfactant. Enantiomers of these compounds, except laudanosoline, were successfully separated within 12 min using a separation tube of effective length 500 mm × 0.05 rum i.d. and a 0.05 M sodium taurodeoxycholate solution of pH 7.0. The observed theoretical plate numbers of the peaks were ca. 150000. Chiral recognition was affected by the structure of bile salts, the pH of the buffer solutions used and the structure of the solutes. Of four kinds of bile salts, successful chiral separation was achieved only using sodium taurodeoxycholate solution under neutral conditions. The method was applied to the optical purity determination of trimetoquinol hydrochloride. The effects of surfactant concentrations and some additives to the micellar solution are briefly described.  相似文献   

12.
The separation of two different sets of synthetic peptides has been investigated by high-performance capillary zone electrophoresis utilising naked, fused silica capillaries. The effects of electrolyte pH, buffer concentration, capillary length and electric field strength on the separation efficiency and selectivity were systematically varied, with the highest resolution achieved with buffer electrolytes of low pH and relatively high ionic strength. Under optimised separation conditions utilising the "short end injection" separation approach with negative electric field polarity, a series of eight structurally-related synthetic peptides were baseline resolved within 4 min without addition of any modifier of the background electrolyte with separation efficiencies in the vicinity of 600000 theoretical plates/m. Further significant enhancement of separation efficiencies could be achieved by taking advantage of the "long end injection" approach with positive electric field polarity. The outcome of these experimental variations parallels the "sweeping" effect that has been observed in the capillary electrochromatographic and micellar electrokinetic separations of polar molecules and permits rapid resolution of peptides with focusing effects. In addition, small changes in the electrolyte buffer pH and concentration were found to have a significant impact on the selectivity of synthetic peptides of similar intrinsic charge. These observations indicate that multi-modal separation mechanisms operated under these conditions with the unmodified fused silica capillaries. This study, moreover, documents additional examples of peptide-specific multi-zoning behaviour in the high-performance capillary zone electrophoretic separation of synthetic peptides.  相似文献   

13.
Sample injection in microchip-based capillary zone electrophoresis (CZE) frequently rely on the use of electric fields which can introduce differences in the injected volume for the various analytes depending on their electrophoretic mobilities and molecular diffusivities. While such injection biases may be minimized by employing hydrodynamic flows during the injection process, this approach typically requires excellent dynamic control over the pressure gradients applied within a microfluidic network. The current article describes a microchip device that offers this needed control by generating pressure gradients on-chip via electrokinetic means to minimize the dead volume in the system. In order to realize the desired pressure-generation capability, an electric field was applied across two channel segments of different depths to produce a mismatch in the electroosmotic flow rate at their junction. The resulting pressure-driven flow was then utilized to introduce sample zones into a CZE channel with minimal injection bias. The reported injection strategy allowed the introduction of narrow sample plugs with spatial standard deviations down to about 45 μm. This injection technique was later integrated to a capillary zone electrophoresis process for analyzing amino acid samples yielding separation resolutions of about 4–6 for the analyte peaks in a 3 cm long analysis channel.  相似文献   

14.
The feasibility of a microcolumn electrophoresis technique was investigated with a 100 mm length, 2 mm I.D. fused-silica microcolumn packed with uniform quartz microncrystals prepared by hydrothermal synthesis. To evaluate the separation technique, tryptophan, phenylalanine and tyrosine were primarily separated by the microcolumn electrophoresis and detected at 216 nm without derivatization by an ordinary spectrophotometer. The separation conditions of the amino acids were optimized. With 1.5 mmol/L disodium phosphate buffer solution (pH 11.5) containing 25% (v/v) methanol and 10% (v/v) acetonitrile, the three amino acids were separated and the separation efficiency of tryptophan was 4.5 × 104 plates/m. The limits of detection were 0.035, 0.22 and 0.20 μmol/L, respectively. The sample capacity of the electrophoretic microcolumn achieved 35 μL. The proposed method was used to determine these amino acids in compound amino acid injection samples without derivatization. For the simplicity and portability of the microcolumn electrophoresis, it is studied as one of the high-performance separation techniques for an in situ and real-time electrokinetic flow analysis system. For its high detection sensitivity and large sample capacity, it can be developed for preparative electrophoresis.  相似文献   

15.
Microchip electrophoresis for the short-time analysis of amino acids in Japanese green tea was developed. The amino acids in Japanese green tea were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F). The derivatives were filtered and directly analyzed by electrophoresis on a plastic microchip with a 31-mm long separation channel with fluorescence detection. Amino acid analysis of Japanese green tea was improved by removing polyphenols using a polyvinylpolypyrrolidone pretreatment. Elution profiles of NBD-amino acids were examined under different running buffer conditions, and the sodium dodecyl sulphate in the running buffer exhibited a dramatically high-separation efficiency of amino acids by inhibiting their adsorption on the channel walls. Under the optimized conditions (5 mM phosphate buffer (pH 5.5) containing 0.05 mM sodium dodecylsulfate as running buffer), the main amino acids contained in Japanese green tea were well separated within 2 min, and theanine (1475 mg/100 g tea leaf), Arg (408 mg/100 g tea leaf) and Gln (217 mg/100 g tea leaf) were detected in Japanese green tea.  相似文献   

16.
Li Y  DeVoe DL  Lee CS 《Electrophoresis》2003,24(1-2):193-199
Isoelectric focusing (IEF) separations, in general, involve the use of the entire channel filled with a solution mixture containing protein/peptide analytes and carrier ampholytes for the creation of a pH gradient. Thus, the preparative capabilities of IEF are inherently greater than most microfluidics-based electrokinetic separation techniques. To further increase sample loading and therefore the concentrations of focused analytes, a dynamic approach, which is based on electrokinetic injection of proteins/peptides from solution reservoirs, is demonstrated in this study. The proteins/peptides continuously migrate into the plastic microchannel and encounter a pH gradient established by carrier ampholytes originally present in the channel for focusing and separation. Dynamic sample introduction and analyte focusing in plastic microfluidic devices can be directly controlled by various electrokinetic conditions, including the injection time and the applied electric field strength. Differences in the sample loading are contributed by electrokinetic injection bias and are affected by the individual analyte's electrophoretic mobility. Under the influence of 30 min electrokinetic injection at constant electric field strength of 500 V/cm, the sample loading is enhanced by approximately 10-100 fold in comparison with conventional IEF.  相似文献   

17.
A method for the simultaneous concentration and separation of weak acids using an acidic polyacrylamide gel, fabricated in the microfluidic channel of a commercial poly(methyl methacrylate)-made microchip, is reported. This approach is based on simple photochemical copolymerization for the fabrication of a permselective preconcentrator. The intersection of the poly(methyl methacrylate)-made microchip was filled with a gel solution comprising acrylamide, N,N'-methylene-bis-acrylamide, and 2-acrylamidoglycolic acid, with riboflavin as a photocatalytic initiator. In situ polymerization, near the cross of the sample outlet channel, was performed by irradiation with an argon ion laser beam that is also used as the light source for fluorimetric detection. The electrokinetic properties, combined with electrostatic repulsion between sample components and the anionic groups on the polyacrylamide gel, enable the entrapment and concentration of weak acids at the interface of the cathodic side of the gel plug. This method displays concentration factors of up to 10(5) within 3 min. The effectiveness of the ionic preconcentrator was demonstrated by the sensitive analysis of fluorescein isothiocyanate-labeled amino acids.  相似文献   

18.
We present a novel isotachophoresis–gel electrophoresis (ITP–GE) microchip system designed for rapid and efficient isotachophoretic preconcentration coupled with gel electrophoresis separation by using a negative pressure sampling technique. The overall ITP–GE procedure involves only three steps: sample loading, ITP preconcentration and GE separation and was controlled by a simple and compact negative pressure sampling device, which is composed of a vacuum vessel, a three-way electromagnetic valve and a single high voltage power supply. During the sample loading stage, a negative pressure was applied via a three-way electromagnetic valve in headspace of the two sealed sample waste reservoirs (SWs). A sandwiched sample zone between a leading and a terminating electrolyte zone was formed in the channel intersection in less than 1 s. Once the three-way electromagnetic valve was switched to connect SWs to ambient atmosphere to release vacuum in SWs, ITP preconcentration in free solution and GE separation in the 4% hydroxyethylcellulose (HEC) sieving material were consequently activated under the electric potentials applied. The performance of present approach was evaluated by using DNA fragments as model analytes. Compared to conventional cross microchip GE using electrokinetic pinched injection, an average signal enhancement of 185-fold was obtained with satisfactory resolution. The results demonstrated the ITP–GE approach possessing an exciting potential of high sensitivity and short sampling time with significant simplification in operation and instrumentation.  相似文献   

19.
建立了以电堆积大体积进样-在线扫集-胶束毛细管电动色谱法测定胡黄连中的异阿魏酸、肉桂酸、阿魏酸和香草酸的新方法.考察了pH值、四硼酸钠浓度、SDS浓度、电压、有机溶剂和进样时间对分离效果的影响.以40mmol/L四硼酸钠-80mmol/L十二烷基磺酸钠(SDS)为缓冲液(含10%(V/V)甲醇,pH 9.4),在进样电...  相似文献   

20.
Nagata H  Tabuchi M  Hirano K  Baba Y 《Electrophoresis》2005,26(14):2687-2691
In this paper, we describe a method for size-based electrophoretic separation of sodium dodecyl sulfate (SDS)-protein complexes on a polymethyl methacrylate (PMMA) microchip, using a separation buffer solution containing SDS and linear polyacrylamide as a sieving matrix. We developed optimum conditions under which protein separations can be performed, using polyethylene glycol (PEG)-coated polymer microchips and electrokinetic sample injection. We studied the performance of protein separations on the PEG-coated PMMA microchip. The electrophoretic separation of proteins (21.5-116.0 kDa) was completed with separation lengths of 3 mm, achieved within 8 s on the PEG-coated microchip. This high-speed method may be applied to protein separations over a large range of molecular weight, making the PEG-coated microchip approach applicable to high-speed proteome analysis systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号