首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pre-annealing ageing time at 70 °C on the electrical properties and swelling behaviour in kerosene of a new tri-block rubber based on blends of natural rubber (NR) and different concentration ratios of both styrene-butadiene rubber (SBR) and butyl rubber (IIR), all incorporating 40 phr (parts per hundred parts of rubber by weight) of high abrasion furnace (HAF) carbon black, were investigated.

It was found that the interspacing distance, d, between carbon particles or aggregates is greatly affected by physical ageing and also by the rubber ratios in the test specimens.

Moreover, the degree of swelling, Q (%), in kerosene was found to decrease with both physical ageing and IIR content of the specimen.  相似文献   


2.
NMR spectroscopy, NMR relaxation, and NMR with a pulsed magnetic field gradient methods are used to study the swelling of the elastomers based on ethylene-propylene rubber, butadiene-nitrile rubber, and fluororubber SKF-26 in transformer oil. Components corresponding to the fractions of oil and polymer network are identified. It is shown that the affinity of the polymers toward transformer oil displays an increase in the orderly sequence of ethylene-propylene rubber, fluororubber, and butadiene-nitrile rubber; the stability of the polymers towards carbon tetrachloride falls in the same sequence. Based on an analysis of the spin–spin relaxation time depending on the degree of swelling, it is found that fluororubber elastomers are characterized by the formation of a polymer network that prevents further sorption, In contrast, elastomer based on ethylene-propylene rubber gives no indication of the formation of a rigid polymer network.  相似文献   

3.
In this work the effect of swelling and temperature on the resistivity of highly carbon black filled elastomers under strain is investigated. This work shows that swelling, even to a modest extent of less than 10%, causes a marked increase in the electrical resistivity. The effect of a linear expansion due to swelling is much more marked than an equivalent linear tensile extension on the electrical resistivity. The increase in electrical resistivity with swelling is also much greater than the increase due to a reduction in the volume fraction of the carbon black alone. The increase in resistivity depends somewhat upon the chemical nature of the swelling agent. There is a relatively small effect of temperature induced volume change on resistivity, contrasting markedly with the large effect of a volume increase due to swelling. These observations suggest that on swelling there is a preferential migration of the solvent to the rubber/filler interfaces. This will push the carbon black aggregates apart and lead to a dramatic increase in the resistivity across the interface. There are also indications that at elevated temperatures the filler/rubber interactions are reduced. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2161–2167, 2004  相似文献   

4.
The spin–spin relaxation time T2 and the fraction of short T2 component for composites of natural rubber with carbon black prepared under various conditions have been measured by pulsed NMR. Effect of swelling with a solvent (CCl4), carbon black species (SAF, HAF, SRF) with different surface areas, and different initial carbon black loadings (35, 50, 70 phr) have been determined. Molecular motion in the rubber phase not in the immediate vicinity of the carbon black surface increases rapidly with increasing solvent concentration, yet it is still slightly restricted compared to rubber with solvent alone. On the other hand, molecular motion in the immobilized layer around carbon black and the fraction rubber in that layer are not affected by the solvent. This indicates strong restriction of molecular motion of polymers at the surface. For estimation of the thickness of the immobilized layer, the necessity of using an appropriate measure of surface area accessible to polymer molecules is pointed out. The degree of immobilization in the layer and the thickness of the layer do not vary appreciably with the nature of carbon black or the initial loading of carbon black.  相似文献   

5.
Rubber of high molar mass, like cis-polybutadiene, shows a stress peak on theenineering stress-strain curve during stretching at room temperature. In this work cis-polybutadiene samples were swollen in a poor solvent, CHCl_3/EtOH (1/1 v/v), for differenttimes. It was found that both the initial modulus and the stress peak on stretching de-creased in magnitude with increasing swelling time and the peak disappeared entirely after1 hour of swelling. On further swelling the initial modulus increased somewhat and a smallstress peak re-appeared after swelling for 2 h. The disappearance of the stress peak afterswelling is interpreted as the result of disruption of cohesional entanglements present in theinitial rubber sample. The re-appearance of a small stress peak and the increase of modu-lus on further swelling are interpreted as being of the same nature as the phenomenon ofanti-plasticization. It is the result of forming some new cohesional entanglements of largerbinding energies through longer range chain segmental motions excited after the disruptionof the previously existing cohesional entanglements in the rubber. Thus an understand-ing of the stress peak on stretching a high molar mass rubber and the phenomenon ofanti-plasticization on molecular level has been put forward.  相似文献   

6.
The effect of different polyfunctional monomers (PFMs) as enhancing agents on the properties of natural rubber/styrene-butadiene rubber blend reinforced with 40 (phr) part per hundred part of rubber, by weight of HAF carbon black and vulcanized with gamma irradiation was investigated. The coagents N,N’ methylene diacrylamide (MDA), trimethylol propane-trimethacrylate (TMPTMA) and trimethylol-methane tetraacrylate (TMMTA) were used at a constant content of 5 phr. The physico-chemical properties such as tensile strength, tensile modulus at 100 % elongation, elongation at break, gel fraction and swelling number were studied. The results indicated that the properties are greatly improved by PFMs at lower doses. TMMTA as coagent is more effective than TMPTMA and MDA.  相似文献   

7.
Ultra high molecular weight polyethylene (UHMW-PE) fibers were used in a chopped form and at different concentrations as a reinforcing material in ethylene–propylene–diene terpolymers (EPDM). The effect of radiation dose and fiber concentration on the mechanical properties of the vulcanized rubber composites obtained was measured. It was found that γ-irradiation improves the interfacial adhesion between UHMW-PE fiber (Spectra 1000) and EPDM matrix which was detected by scanning electron microscopy (SEM). In addition, the Young modulus of the composites increases as the irradiation dose increases. Increasing the concentration of the fibers up to 40 phr leads to an enhancement in mechanical properties and swelling resistance of obtained composites, especially in the absence of carbon black. The absolute value of the modulus increased by a factor of at least two with the addition of carbon black. Moreover the tear strength of reinforced and filled EPDM was improved with respect to reinforced rubber. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
An ESR method was used to investigate the formation of free radicals during rubber mastication and filling of rubber with various carbon blacks. The ESR spectra of natural rubber and styrenebutadiene rubber with various carbon blacks are of a complex character. A narrow component line is superimposed on the much broader signal line of carbon black. The changes in this narrow spectral line with plasticization time and with carbon black content in the rubber–filler system result from interactions between the rubber macromolecules and filler particles.  相似文献   

9.
Carbon black is widely used as an active filler in the rubber industry to improve the physical properties of rubber. The surface energy of carbon black is high compared to that of various elastomers like styrene–butadiene rubber (SBR), butadiene rubber (BR) and ethylene–propylene–diene rubber (EPDM). The work aims at reducing the surface energy of carbon black by modifying its surface for application especially in rubber blends. The present paper looks into the possibility of using plasma polymerisation of acetylene as a surface modification technique for carbon black in comparison with silica. Thermogravimetric analysis, wetting behaviour with various liquids of known surface tension and time of flight secondary ion mass spectrometry (ToF-SIMS) were used to characterise the carbon black before and after surface modification. The study shows that surface modification of carbon black by plasma polymerisation is difficult in comparison with silica, unless treated for long duration. The mechanistic aspects of the surface modification and the importance of active sites on the carbon black surface for effective modification are discussed in the paper.  相似文献   

10.
The dynamic properties, curing characteristics and swelling behaviour of styrene butadiene rubber (SBR) and epoxidized natural rubber (ENR) blends were studied. The incorporation of ENR 50 in the blends improved processability, stiffness, resilience and reduced the damping property. In terms of curing characteristics, the scorch time, t2 and curing time, t90 of the SBR/ENR blends decrease with increasing ENR content. At room temperature (23°C) and at 100°C the swelling degree of the SBR/ENR blends decreases with increasing ENR content.  相似文献   

11.
Nitril rubber‐PVC composites having carbon black and mica fillers in different compositions as hybrid reinforcements have been studied. The degree of replacement on static‐dynamic mechanical, swelling behavior of resultant composites were all discussed. Results showed that increase in mica in total filler resulted in increase in toughness values, decrease in swelling in organic solvents together with increase in vibrational damping capacity of the resultant composites.  相似文献   

12.
Ground rubber powder (GRP) with three different sizes was incorporated into nature rubber matrix with different loading. Cure characteristics, swelling behaviour, crosslink density, tensile fractured surface, and mechanical properties have been studied. Based on the cure characteristics, it is evident that the processability of the rubber compounds has not changed obviously with the different GRP loading. The introduction of GRP in virgin rubber leads to the increase in swelling degree and the decrease in crosslink density. Tensile strength, hardness and abrasion resistant deteriorate with the increase of GRP loading, but the tear resistance gets better. If the ground rubber particles are smaller, the properties are more similar to the virgin rubber. Because of the phase separation of the GRP and matrix, the properties get worse with the bigger ground rubber powder.  相似文献   

13.
Reclaiming of ground rubber tire (GRT) by a novel reclaiming agent   总被引:5,自引:0,他引:5  
The present paper describes the mechanical reclaiming of ground rubber tire (GRT) by tetra methyl thiuram disulfide (TMTD), a multi-functional reclaiming agent. The versatility of the proposed agent is that it acts as a reclaiming agent during reclaiming and as a curing agent during revulcanization of the reclaimed sample. Reclaiming of GRT was carried out on an open two roll mixing mill at various time intervals and different concentrations of the reclaiming agent (TMTD). The degree of reclaiming was evaluated by measurement of the gel content, inherent viscosity of sol rubber, Mooney viscosity of the reclaimed rubber, crosslink density, swelling ratio and molecular weight between two crosslink bonds as a function of milling time. Also, the influence of the gel content on crosslink density at various time intervals on the open two roll mixing mill was determined. A unique correlation between gel fraction and crosslink density obtained at various time intervals and concentrations of reclaiming agent indicated that an optimization of the concentration of TMTD and milling time has a positive influence on improving the efficiency of reclaiming. The reclaiming conditions have been optimized in view of the mechanical properties of the revulcanized GRT and the aging resistance properties of the revulcanized reclaim. The influence of the concentration of sulfur on the mechanical properties in the revulcanized reclaim was also studied. Scanning electron microscopy (SEM) studies further indicate the coherency and homogeneity in the revulcanized reclaim rubber when reclamation is carried out by optimum concentration of TMTD after maximum time of reclaiming.  相似文献   

14.
The effect of incorporating sorbic acid (SA), an echo-friendly curing agent, and silica or carbon black (CB) filler, as well as gamma irradiation on the physico-chemical, mechanical and thermal properties of ethylene propylene diene monomer rubber (EPDM) was investigated. The results indicated that the developed composites revealed improvement in the studied parameters over the untreated samples. Filler incorporation into rubber matrix has been proven a key factor in enhancing the swelling resistance, tensile strength and thermal properties of the fabricated composites. The improvement in tensile strength and modulus was attributed to better interfacial bonding via SA. Alternatively, a comparison was established between the performance of the white and black fillers. The utmost mechanical performance was reported for the incorporated ratios 10 phr SA and 40 phr white filler into a 50 kGy irradiated composite. Meanwhile, the incorporation of CB yielded better thermally stable composites than those filled with silica at similar conditions.  相似文献   

15.
The effect of hot air exposure at 150 °C for up to 12 weeks (ca. 2000 h) on the properties of hydrogenated nitrile butadiene rubber (HNBR) compounds with varying degrees of carbon black content was investigated and reported in this paper. The composition of the HNBR was varied with 0, 10, 30 or 50 PHR carbon black. The tensile properties, hardness, density, solvent saturation swelling and carbon dioxide permeability of these specimens was investigated before and after exposure in a hot air oven. Correlations between these results are reported for the compounds considered in this work. These correlations illustrate how the changes in performance which would require test samples of specific geometries (such as tensile modulus or gas permeation) might in some cases be predicted by tests which do not require exact geometries (such as density or surface hardness), for the materials investigated in this paper.  相似文献   

16.
A butyl rubber derivative that can be cured upon exposure to UV light in the absence of additional chemical additives was developed. This polymer was prepared by the reaction of hydroxyl-functionalized butyl rubber with cinnamoyl chloride to provide a cinnamate functionalized rubber. The cinnamate content was varied by starting with derivatives prepared from butyl rubber containing either 2 or 7 mol% isoprene. The kinetics of the cross-linking was studied by UV–visible spectroscopy and it was found to vary according to the film thickness. The changes in gel content and volume swelling ratio with irradiation time were dependent on the cinnamate content. Toxicity studies suggested that the cross-linked materials do not leach toxic molecules. The approach was also applied to obtain cross-linked films of butyl rubber-poly(ethylene oxide) graft copolymers, leading to surfaces that resisted the adhesion and growth of cells. Thus the approach is versatile and is of particular interest when non-leaching coatings of cross-linked butyl rubber are desired for biomedical or other applications.  相似文献   

17.
One of the most popular cured rubbers used in industrial applications is styrene butadiene rubber (SBR) and frequently its network structure is studied by means of swelling techniques in solvent. Normally, toluene is used as solvent in this test. In order to estimate the crosslink density from the equilibrium volume fraction of rubber in the swollen state, the correct evaluation of the Flory-Huggins interaction parameter χ is necessary. This work covers the swelling behavior of cured SBR in toluene. The rubber was vulcanized with different amounts sulfur and accelerator at 433 K in order to obtain several network structures and crosslink densities. Network characterisations of the compounds were made by swelling measurements in the frame of the Flory-Rehner relationship using the molecular weight of the network chain between chemical crosslinks obtained previously by mechanical tests. A relationship between χ and vr, the polymer volume fraction at equilibrium (maximum) degree of swelling, was established for the cured SBR/toluene system. It was found that χ is not a constant but depends on the crosslink density in the sample. The types of crosslinks in these samples where estimated applying this function to the swelling behavior of the compounds previously treated with the thiol probe method.  相似文献   

18.
This article deals with blends based on natural rubber (NR) and recycled ethylene-propylene-diene rubber (R-EPDM). Natural rubber latex (NRL) was introduced into the blends to enhance interfacial adhesion between NR and R-EPDM. A new route of compounding was also suggested. The blends were prepared by mixing R-EPDM and other additives in NRL before blending with natural rubber on a two-roll mill. By applying this method, the homogeneity of the blends and cross-linking distribution are significantly improved. The blends exhibited superior state of cure, swelling resistance, mechanical properties and dynamic mechanical properties. The degree of entanglement between NR and R-EPDM also increased after NRL modification.  相似文献   

19.
Formation of bound rubber is affected by the physical structure and surface chemistry of filler and the property of rubber. Variation of the bound rubber formation in styrene‐butadiene rubber compounds filled with silica and/or carbon black was studied. Influence of temperature on extraction of loosely bound rubber was also investigated. For the both silica and carbon black‐filled compounds, the bound rubber content increases with increase in the silica content ratio. The bound rubber content decreases with increasing the extracting temperature. The loosely bound rubber content of the silica‐filled compound is higher than that of the carbon black‐filled one. Activation energy for the extraction of the unbound and loosely bound rubbers becomes higher as the total filler content increases. The activation energy of the silica‐filled compound is higher (almost double the value) than for the carbon black‐filled one. Copyright­© 2002 John Wiley & Sons, Ltd.  相似文献   

20.
Different types of unplasticized cast polyurethanes with hardness around 60 Shore A have been compared. The tensile properties, tear strength, resistance to hydrolysis, and swelling in solvents and water were examined. The influence of composition on the properties of cast polyurethanes prepared from a polyadipate polyol and diisocyanates, including the effect of a range of fillers, was investigated in detail. Fumed silica, fumed alumina, and carbon black significantly increased the hardness and tensile strength of the rubber, whereas kaolin and talc gave small increases. Ground silica, calcite, and rutile had no effect. No significant increases in tensile strength were obtained with silane and titanate coupling agents with a fumed silica filler. The rate of hydrolysis or extent of swelling in xylene was unchanged by fillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号