首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Methyl methacrylate (MMA) can be polymerized by a charge transfer complex formed by the interaction of urea, methyl methacrylate, and carbon tetrachloride (CCl4) in a nonaqueous solvent like dimethylsulfoxide (DMSO). The rate of polymerization can be accelerated by Lewis acids like Fe3+. This article reports the polymerization of MMA initiated by urea and CCl4 and accelerated with hexakisdimethylsulfoxide iron (III) perchlorate, [Fe(DMSO)6](ClO4)3, and A at 60°C. Definite induction periods were observed for the polymerization reaction initiated by urea and CCl4 alone, but the induction period completely vanished when the molar ratio of urea to A reached 6:1. The molecular weights of the polymers with 6:1 molar ratio of urea to A were higher than with urea alone. The rate constant for the polymerization of MMA in the presence of [Fe(urea)6]3+ was 1.03 × 10?5 1 mol?1 s?1 at 60°C. The transfer constant for CCl4 for polymerization with urea alone is 2.43 × 10?3 at 60°C.  相似文献   

2.
Methyl methacrylate (MMA) can be polymerized by the charge-transfer complex formed by the interaction of melamine (MM), MMA and carbon tetrachloride in a non-aqueous solvent like dimethyl sulphoxide (DMSO) or N-N-dimethylformamide. The polymerization can be accelerated by Lewis acids like Fe3?. This paper reports the polymerization of MMA initiated by MM and CCl4 and accelerated with hexakis dimethylsulphoxide iron(III) perchlorate [Fe(DMSO)6] (ClO4)3. A, at 60°. Induction periods were observed for the polymerization initiated by MM and CCl4 alone, but not when the molar ratio of MM to A became 3:1. The molecular weights of the polymers with 3:1 molar ratio of MM to A were higher than with MM alone. The rate constant for the polymerization of MMA in presence of [Fe(MM)3]3+ was 1.4181 × 10?5 1 mol?1 sec?1 at 60°. The transfer constant for CCl4, in the absence of A, is 4.66 × 10?3.  相似文献   

3.
The polymerization of vinyl monomer initiated by poly-p-vinylphenol (PVPh) in NaOH aqueous solution was carried out at 85°C with shaking. Methyl methacrylate (MMA) was polymerized, whereas styrene and acrylonitrile were not. PVPh, which is dissociated into phenolate form (PVPh?Na+) in NaOH aqueous solution, was effective for the polymerization. The effects of the amounts of MMA, PVPh, NaOH, and H2O on the conversion of MMA were studied. The rate of polymerization of MMA increased with an increase in the molecular weight of PVPh-Na. The overall activation energy was estimated as 54 kJ mol?1. The polymerization proceeded through a radical mechanism. The addition of tetra-n-butylammonium bromide increased the rate of polymerization.  相似文献   

4.
The polymerization of vinyl monomer initiated by an aqueous solution of sodium polystyrenesulfonate (PSS-Na) was carried out at 85°C. Methyl methacrylate (MMA) and styrene were polymerized, while acrylonitrile was not. The rate of polymerization of MMA decreased with the increase of the degree of polymerization of PSS-Na. However, the polymerization was not initiated by sodium ethyl benzenesulfonate which was a unit molecule of PSS-Na. The polymerization proved to be a radical reaction. The polymerization was considered to commence with the formation of hydrophobic areas with PSS-Na in the aqueous phase. MMA is incorporated into these areas, and there the polymerization is initiated and proceeds. The hydrophobic areas were assumed to be similar to the micelles formed by anionic detergents such as sodium alkylbenzene sulfonate. An initiation mechanism is proposed.  相似文献   

5.
The polymerization of vinyl monomer initiated by polyethyleneglycol (PEG) in aqueous solution was carried out at 85°C with shaking. Acrylonitrile (AN), methyl methacrylate (MMA), and methacrylic acid were polymerized by PEG–300 (M?n = 300), whereas styrene was not. The effects of the amounts of monomer and PEG, the molecular weight of PEG, and the hydrophobic group at the end of PEG molecule on the polymerization were studied. The selectivity of vinyl monomer and the effect of the hydrophobic group are discussed according to “the concept of hard and soft hydrophobic areas and monomers.” The kinetics of the polymerization was investigated. The overall activation energy in the polymerization of AN was estimated as 37.9 kJ mol?1. The polymerization was effected by a radical mechanism.  相似文献   

6.
The charge-transfer complex formed between an amine and carbon tetrachloride can initiate the polymerization of vinyl monomers in a nonaqueous solvent such as dimethylsulfoxide. Here we use cyclopentylamine (CPA) and heptylamine (HA) as the donor compounds for charge-transfer initiation of the polymerization of methl methacrylate (MMA). The rate of polymerization Rp = k[MMA]1 [amine]0.5 [CCl4]0.5 when [CCl4] [amine] ≤ 1; when [CCl4] [amine] < 1, Rp becomes independent of [CCl4] and Rp = k[MMA]1.5 [amine]0.5. The average constant at 60°C for the polymerization of MMA in terms of monomer were (1.66 ± 0.03) × 10?5 and (1.46 ± 0.04) × 10?5 s?1 with CPA and HA, respectively, when [CCl4] [amine] ≤ 1, and (1.16 ± 0.04) × 10?5 and (1.39 ± 0.08) × 10?1 L/mol·s when [CCl4]/[amine] < 1.  相似文献   

7.
Polymerization of methyl methacrylate (MMA) with aliphatic primary amines and carbon tetrachloride has been investigated in th dimethylsulfoxide medium by employing a dilatometric technique at 60°C. The rate of polymerization (Rp) has been evaluated under the conditions, [CCl4]/[amine] < 1 and > 1. The kinetic data indicate possible participation of the charge transfer complexes formed between the amine + CCl4 and the amine + MMA in the polymerization of MMA. In the absence of CCl4 or amine, no polymerization of MMA was observed under the present experimental conditions. The polymerization of MMA was inhibited by hydroquinone, indicating a free radical initiation. The energy of activation varied from 32 to 58 kJ mol?1.  相似文献   

8.
The polymerization of vinyl monomers initiated by binary initiator systems composed of a copper–amine complex type resin and organic halides has been studied. These binary systems initiated the polymerization of various vinyl monomers. A kinetic study of the polymerization of methyl methacrylate initiated by the copper–amine complex resin–CCl4 system was carried out, and it was found that the polymerization proceeds by way of a radical mechanism. This fact was also supported by the copolymerization of methyl methacrylate with styrene. The overall activation energy of the polymerization of methyl methacrylate was estimated as 8.4 kcal/mole. The activity of the initiator systems was greatly dependent upon the dissociation energy of carbon–halogen bonds in the organic halides. A possible initiation mechanism with the binary systems is proposed and discussed.  相似文献   

9.
Mixtures of methyl methacrylate (MMA) and 4-methyl-1-pentene (4MP)(molar ratio MMA/4MP = 3–0.1) have been subjected to polymerization by VOCl3/Al(C2H5)3. The amorphous polymeric products, extractable with boiling methanol up to 75%, consist mainly of MMA monomeric units (~80%). The composition of the product was almost independent of the starting MMA/4MP ratio. Comparison of these results with thoseof homopolymerization experiments shows that the presence of MMA drastically reduces the polymerization rate of 4MP. Moreover, 4MP is polymerized with rather low stereospecificity in the presence of MMA. Fractionation by solvent extraction of the unchanged polymeric products as well as of hydrolyzed samples seems to exclude the formation of random copolymers, suggesting to us that the polymerization of the two monomers takes place by different mechanisms. On taking into account these data and analogous data obtained with 4MP and alkyl acrylates or tert-butyl methacrylate, is it suggested that, contrary to what has previously been proposed, the MMA polymerization by Ziegler-Natta catalysts does not take place at the same centers which polymerize 4MP; moreover a coordinated anionic mechanism for MMA polymerization does not seem to be very probable.  相似文献   

10.
Some electron-accepting compounds such as maleimide (MIm), maleic anhydride (MAn), and tetracyanoquinodimethane were found to show pronounced accelerating effects on vinyl polymerization initiated with metal chelates. The polymerization of methyl methacrylate (MMA) initiated with bis(ethyl acetoacetato)-copper(II) (Cu(eacac)2) and MIm was studied kinetically in benzene. The overall activation energy of the polymerization was calculated to be 11.5 kcal/mol. This value was much lower than that (17.6 kcal/mol) for the polymerization of MMA with Cu(eacac)2 alone. The polymerization rate (Rp) was expressed as Rp =k[MIm]1/2 [Cu(eacac)2]1/2 [MMA] The first-order dependence of Rp on the monomer concentration indicated that the monomer had no participation in the initiation step, in contrast with polymerization in the absence of MIm (where a monomer concentration dependence of 1.4th order was observed). Electronic spectroscopic study revealed that a complex between MIm and Cu(eacac)2 had been formed. The ligand radical, an acetylcarboethoxymethyl radical, was trapped by 2-methyl-2-nitrosopropane in the reactions of Cu(eacac)2 with MIm and with MAn in benzene. From these results the mechanism of the initiation of polymerization is discussed.  相似文献   

11.
The polymerization of vinyl monomer initiated with poly-2-hydroxyethylmethacrylate (PHEMA) in water was carried out at 85°C. Cu(II) ion was not necessary for this polymerization. Methacrylate monomers were polymerized, while styrene and acrylonitrile were not. The polymerization was found to proceed through a radical mechanism in the interior of PHEMA which was swelled in water. The grafting efficiency of MMA polymer obtained was about 90%. The overall activation energy was estimated to be 32.9 kJ/mol.  相似文献   

12.
The polymerization of vinyl monomer initiated by an aqueous solution of poly(vinylbenzyltrimethyl)ammonium chloride (Q-PVBACI) was carried out at 85°C. Styrene, p-chlorostyrene, methyl methacrylate, and i-butyl methacrylate were polymerized, whereas acrylonitrile and vinyl acetate were not. The effects of the amounts of vinyl monomer, Q-PVBACI, and water on the conversion of vinyl monomer were studied. The overall activation energy in the polymerization of styrene was estimated as 79.1 kJ mol?1. The polymerization proceeded through a radical mechanism. The selectivity of vinyl monomer was discussed by “a concept of hard and soft hydrophobic areas and monomers.”  相似文献   

13.
The aqueous heterogeneous polymerization of methyl methacrylate (MMA) initiated by the Ce4+-glycolic acid (GA) redox system was studied at 35 × 0.2°C under a nitrogen atmosphere. The rate of monomer disappearance was proportional to [MMA]1[GA]1[Ce4+]°, and the rate of eerie ion disappearance was found to be directly proportional to [Ce4+] and [GA] but independent of [MMA]. The activation energy was found to be 34 kJ/mol. The molecular weight of polymethyl methacrylate increased with increasing [MMA] and decreased with increasing [oxidant]. The effect of increasing [H2SO4] on polymerization was also studied. The results are compared with those obtained for the aqueous homogeneous polymerization of acrylamide with the same redox pair.  相似文献   

14.
梁建国  韩丙勇 《化学学报》2006,64(7):701-704
采用苯氧铜/正丁基锂(PhOCu/n-BuLi)体系引发MMA聚合, 通过GPC, 1H NMR对聚合物进行了表征. 实验结果表明, 该体系聚合反应速度较快, 温度、引发体系组成是影响聚合物分子量及其分布、单体转化率、引发剂引发效率、聚合物的立构规整性的主要因素; -40 ℃时分子量分布比较窄, 但引发效率也比较低(大约15%). 低引发效率、宽分子量分布与引发剂的聚集状态有关. 分子量与单体浓度、引发剂浓度的关系说明, 该体系具有一定程度的活性聚合特点.  相似文献   

15.
研究了微量CCl4对超声引发苯乙烯乳液聚合的影响.随着CCl4含量增加,聚合速率先增加后降低.在CCl4存在下H2O2产率增加,pH值与所得聚合物分子量降低和无挥发性氢自由基捕捉剂对超声引发苯乙烯乳液聚合的影响表明了CCl4使超声引发苯乙烯乳液聚合速率提高的原因在于CCl4能进入空化泡内捕捉氢自由基,使反应体系的自由基浓度增高.但在超声引发甲基丙烯酸甲酯乳液聚合体系中,甲基丙烯酸甲酯较大的蒸汽压减少CCl4对氢自由基的捕捉几率,因此CCl4的加入没能提高甲基丙烯酸甲酯的聚合反应速率.  相似文献   

16.
Abstract

The polymerization of vinyl monomers initiated by dimethylhydroxylamine hydrochloride (DHA)-titanous(III) chloride redox system has been studied in water under a nitrogen atmosphere. In the polymerization of methyl methyacrylate (MMA) initiated by the above system, the rate of polymerization has been found to be proportional to [DHA]0.5 for DHA concentrations of less than 2.06 × 10?3 mole/liter, whereas at higher concentrations the rate tends to fall rapidly. The rate has also been found to be proportional to [Ti(m)] 0.58 and to [MMA] 1.0. The maximum rate of polymerization has been observed at a 1:1 molar ratio of DHA to Ti(III). The polymerization proceeded via a radical mechanism. The overall activation energy was estimated as 5.5 kcal/mole. It has been suggested that the reduction of dimethylhydroxylamine by titanous(III) chloride yields the dimethylamino radical, which initiates vinyl polymerization. An examination of the initiating capacity of the initiator system for the polymerization of some vinyl monomers has also been made.  相似文献   

17.
The initiation of polymerization of vinyl monomers such as methyl methacrylate (MMA) and methyl acrylate (MA) by a charge transfer complex formed between n-butylamine(nBA) and carbon tetrachloride (CCl4) in dimethylsulfoxide (DMSO) at 30°C is slow. The effect of the dimethylsulfoxide complexes of Rh(III) and Ru(II) on the polymerization of MMA and MA in the presence of nBA, and CCl4 in DMSO has been studied. The rate of polymerization and percent conversion of the MMA and MA at 30°C are evaluated at the critical concentration of the metal complexes. At the critical range of the metal complex concentrations, both Rp, and percent conversion of MMA and MA were found to be highest. However, above and below the critical concentrations, Rp and percent conversion of the monomers were found to decrease. A suitable mechanism for the polymerization has been proposed.  相似文献   

18.
The polymerization of methyl methacrylate (MMA) initiated with a system of oxycellulose, CuCl2, and water was carried out. The conversion of MMA and the degree of polymerization of homopoly-MMA were larger than obtained with the initiator system of cellulose, CuCl2 and water, while the efficiency of grafting was almost the same. It was confirmed that the polymerization proceeds through a radical mechanism. The effects of amounts of cupric chloride, water, and MMA in the feed on the conversion were studied. The pH of the water phase showed a remarkable effect: maximum conversion was obtained at neutral pH. At 90°C, a ceiling temperature was observed. The overall activation energy was estimated to be 96.7 kJ/mole. The initiation mechanism is discussed.  相似文献   

19.
王耀荣  沈琪  马家乐  赵群 《中国化学》2000,18(3):428-431
Methyl methacrylate (MMA) was effectively polymerized by diphenylamido bis (methylcyclopentadienyl) ytterbium complex (MeCp)2YbNPb2(THF). The reaction can be carried out over a range of polymerization temperature from - 40℃ to 40℃ and gives the poly MMA with high molecular weights. The initiation mechanism was demonstrated by diphenylamido-terminated methyl methacrylate oligomer.  相似文献   

20.
Aqueous polymerization of methyl methacrylate (MMA), initiated by the potassium bromate-thioglycollic acid (TGA) redox system, has been studied at 30 ± 0.2° C under positive pressure of nitrogen. The rate is given by K[MMA] [TGA] 0[KBrO3]x where × = 1 for lower KBrO3 concentrations and 0.5 for higher KBrO3 concentrations. The reaction has been studied over the 20–45°C range. The activation energy was found to be 65.72 kJ/mol (15.71 kcal/mol) in the investigated range of temperature. Inorganic electrolytes except MnSO4·4H2O and Na2C2O4 depress both the rate of polymerization and the maximum conversion. All the alcohols (viz., MeOH, EtOH, iso-PrOH, tert-BuOH) and acetone depress the rate of polymerization as well as the maximum conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号