首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Adsorption of ammonia (NH3) onto activated carbons prepared from palm shells impregnated with sulfuric acid (H2SO4) was investigated. The effects of activation temperature and acid concentration on pore surface area development were studied. The relatively large micropore surface areas of the palm-shell activated carbons prepared by H2SO4 activation suggest their potential applications in gas adsorption. Adsorption experiments at a fixed temperature showed that the amounts of NH3 adsorbed onto the chemically activated carbons, unlike those prepared by CO2 thermal activation, were not solely dependent on the specific pore surface areas of the adsorbents. Further adsorption tests for a wide range of temperatures suggested combined physisorption and chemisorption of NH3. Desorption tests at the same temperature as adsorption and at an elevated temperature were carried out to confirm the occurrence of chemisorption due to the interaction between NH3 and some oxygen functional groups via hydrogen bonding. The surface functional groups on the adsorbent surface were detected by Fourier transform infrared spectroscopy. The amounts of NH3 adsorbed by chemisorption were correlated with the contents of elemental oxygen present in the adsorbents. Mechanisms for chemical activation and adsorption processes are proposed based on the observed phenomena.  相似文献   

2.
Preparation and characterization of activated carbon from palm shell, a carbonaceous agricultural solid waste, by potassium hydroxide treatment at different stages were studied. The effects of activation temperature and chemical to sample ratio on the characteristics of the activated carbon were investigated. Fixed-bed adsorption of sulfur dioxide (SO(2)) gas was carried out to evaluate the adsorptive capacity of the samples. Desorption tests were conducted to verify the occurrence of chemisorption due to some surface functional groups or of chemical reaction between SO(2) and KOH. It was found that pre-impregnation of raw palm shell was involved in replacement of some hydrogen ions with potassium ions to form cross-linked complexes, which retarded the tar formation during carbonization, resulting in a relatively high yield. Moreover, these potassium ions accelerated the reaction as catalysts during gasification of chars by carbon dioxide. For chars with mid-impregnation, potassium hydroxide acted in two ways: (i) formation of metallic potassium by dehydration and (ii) conversion into potassium carbonate. Metallic potassium intercalated to the carbon matrix accounted for pore development and potassium carbonate layer prevented the sample from over burn-off. Post-impregnation of final products modified the textural characteristics of the sample as some pore entrances were blocked by chemicals. However, potassium hydroxide enhanced the amount of SO(2) uptaken via formation of potassium sulfite.  相似文献   

3.
Two series of activated carbons have been prepared from date pits; series C, using carbon dioxide as activating agent, and series S, prepared by activation with steam under the same experimental conditions. The obtained samples were oxidized with nitric acid in order to introduce more oxygen surface groups. The surface area and porosity of the parent and oxidized activated carbons were studied by N2 adsorption at 77 K and CO2 adsorption at 273 K. The oxygen surface complexes were characterized by temperature-programmed decomposition (TPD). The results show that carbon dioxide and steam activations produce microporous carbons with an increasing amount of CO evolving groups when increasing the burn-off. On the other hand, oxidation with nitric acid increases the amount of CO and CO2 evolved by the decomposition of surface oxygen groups, this increase being related to the development of porosity in the carbon with the degree of activation and to the activating agent used (CO2 versus steam).  相似文献   

4.
Wastes must be managed properly to avoid negative impacts that may result. Open burning of waste causes air pollution which is particularly hazardous. Flies, mosquitoes and rats are major problems in poorly managed surroundings. Uncollected wastes often cause unsanitary conditions and hinder the efforts to keep streets and open spaces in a clean and attractive condition. During final disposal methane is generated, it is much more effective than carbon dioxide as a greenhouse gas, leading to climate change. Therefore, this study describes the possible valorization of two waste streams into activated carbon (AC) with added value due to copyrolysis. High efficiency activated carbon was prepared by the copyrolysis of palm stem waste and lubricating oil waste. The effects of the lubricating oil waste to palm stem ratio and the carbonization temperature on the yield and adsorption capacity of the activated carbon were investigated. The results indicated that the carbon yield depended strongly on both the carbonization temperature and the lubricating oil to palm stem ratio. The efficiency of the adsorption of methylene blue (MB) onto the prepared carbons increased when the lubricating oil to palm stem ratio increased due to synergistic effect. The effects of pH, contact time, and the initial adsorbate concentration on the adsorption of methylene blue were investigated. The maximum adsorption capacity (128.89 mg/g) of MB occurred at pH 8.0. The MB adsorption kinetics were analyzed using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The results indicated that the adsorption of MB onto activated carbon is best described using a second order kinetic model. Adsorption data are well fitted with Langmuir and Freundlich isotherms. The thermodynamic parameters; ΔG°, ΔH° and ΔS° indicate that the adsorption is spontaneous and endothermic.  相似文献   

5.
Hierarchically porous carbons were prepared using a facile preparation method in which diatomite was utilized as both template and catalyst. The porous structures of the carbon products and their formation mechanisms were investigated. The macroporosity and microporosity of the diatomite-templated carbons were derived from replication of diatom shell and structure-reconfiguration of the carbon film, respectively. The macroporosity of carbons was strongly dependent on the original morphology of the diatomite template. The macroporous structure composed of carbon plates connected by the pillar- and tube-like macropores resulted from the replication of the central and edge pores of the diatom shells with disk-shaped morphology, respectively. And another macroporous carbon tubes were also replicated from canoe-shaped diatom shells. The acidity of diatomite dramatically affected the porosity of the carbons, more acid sites of diatomite template resulted in higher surface area and pore volume of the carbon products. The diatomite-templated carbons exhibited higher adsorption capacity for methylene blue than the commercial activated carbon (CAC), although the specific surface area was much smaller than that of CAC, due to the hierarchical porosity of diatomite-templated carbons. And the carbons were readily reclaimed and regenerated.  相似文献   

6.
7.
The amounts of adsorption of two commercial dyes, phenol, and 4-chlorophenol from water on activated carbons were measured at 30°C. The carbons were prepared from cane (bagasse) piths and were activated by steam. The activation temperature and time were in the ranges of 750–840°C and 2 h, respectively. It was shown that the isotherm data of all four solutes could be well fitted by the Langmuir equation under the conditions studied. The adsorption capacities of the solutes were correlated with the microporosity properties of the activated carbons including micropore volume and external surface area. Finally, the adsorption characteristics of the present carbons was compared with those prepared from various agricultural wastes.  相似文献   

8.
The adsorption behaviour and the micro- and mesopore size distributions of commercial palm kernel shell activated carbons (PKSAC) and other commercial activated carbon are characterized. The results showed that PKSAC are predominantly microporous materials, where micropores account 68–79% of total porosity. On the other hand, commercial activated carbons: Norit SX Plus, Calgon 12×40, and Shirasagi “A” activated carbons contained high mesopore fraction ranging from 33 to 52%. The analysis showed that the degree of mesoporosity of PKSAC is increased steadily with the decrease of particle size. This is due to the presence of channels interconnect the smaller pores in the interior of smaller particle size PKSAC. The smaller size PKSAC particle that is highly mesoporous has preformed better on the adsorption of larger molecules such as methylene blue. On the other hand, bigger size PKSAC particle has better performance on the adsorption of smaller adsorbates such as iodine.  相似文献   

9.
The mix-based activated carbon derived from corn stalk and walnut shell was prepared by chemical activation method using phosphoric acid as the activator. The optimized conditions for preparation were obtained by the orthogonal experiment, the characterizations of the activated carbon were performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy(FTIR), Boehm's titration method and nitrogen adsorption. For the prepared mix-based activated carbon, the highest iodine number, methylene blue number and BET surface area are 720.5 mg/g, 195.0 mg/g and 1187 m2/g, respectively, and the pores are mainly mesopores. The mix-based activated carbon shows the higher adsorption capacity for malachite green than the raw materials, the activated carbons prepared only from corn stalk or walnut shell and the commercial activated carbon. The kinetics and thermodynamics of the adsorption can be satisfactorily described by the pseudo-second-order kinetic model and the Langmuir isotherm model, separately.  相似文献   

10.
Supported coupling catalysts for CS2 removal were prepared with different activated carbons originated from wood,coconut shell and coal as supports,and their catalytic activities for CS2 removal were tested at ambient temperature.The textural and surface properties of the activated carbons were characterized by nitrogen adsorption,temperature-programmed desorption(TPD)and Boehm titration.The activated carbon support with meso-and macropores,and oxygen-functional groups performs higher CS2 removal ability at ambient temperature.The effects of flow rate,CS2 inlet concentration,temperature and relative humidity on CS2 removal were also investigated.High efficient removal is obtained at temperature of 50-C,space velocity of 2000 h-1,inlet CS2 concentration of 500 mgS/m3 and relative humidity of 20%with the breakthrough sulfur capacity up to 4.3 gS/gCat and working sulfur capacity up to 7 gS/gCat.  相似文献   

11.
Activated carbons from bagasse fly ash (BFA) were prepared by one step chemical activation using ZnCl2 as activating agent, or combination method of chemical with CO2 physical activation (physicochemical activation). The development of porosity was studied in correlation with the method of activation, activation temperature, and also the chemical weight ratio. A typical sample by the combination method at 600 °C and weight ratio of ZnCl2:BFA = 2 exhibited micropore volume of 0.528 cc/g, mesopore volume of 0.106 cc/g and surface area of 1200 m2/g. For determining the adsorption capacity of the carbon samples in solutions, phenol and methylene blue equilibrium adsorption experiments were conducted. The properties and adsorption capacity of the synthesized activated carbons has been compared to commercial activated carbon (Norit® SX Plus).  相似文献   

12.
Preparation of activated carbon from sawdust by zinc chloride activation   总被引:3,自引:0,他引:3  
A series of activated carbons were prepared from sawdust by zinc chloride activation in different operation conditions. The effects of operation parameters such as impregnation ratio, activation temperature and time on the adsorption properties of activated carbons were measured and analyzed in order to optimize these operation conditions. The experimental results show that under the experimental circumstances studied, both the yield and the adsorption for iodine and methylene blue of activated carbon can reach a relatively higher value in the chemical activation process with the impregnation ratio of 100% ZnCl2/sawdust in the activation temperature of 500 °C carbonized for 60–90 minutes which are the optimum activation conditions in making wood activated carbon. The most important operation parameter in chemical activation with zinc chloride was found to be the impregnation ratio.  相似文献   

13.
The aim of work is to study the adsorption of a common volatile organic compound such as toluene using activated carbons prepared by chemical activation with phosphoric acid of a lignocellulosic precursor, almond shell, under different conditions. The Impregnation ratio, temperature and time of activation were modified to obtain activated carbons with different characteristics. Regarding the characteristics of the activated carbons, the effects of porous structure and surface chemistry on the toluene adsorption capacity from toluene isotherms have been analysed. Results show that the control of properties of the activated carbons, particularly porous structure, highly dependent on the preparation conditions, plays a decisive role on the toluene adsorption capacity of the activated carbons. Concerning the experiments of toluene adsorption conducted in dynamic mode, activated carbons prepared at low temperatures of activation show higher breakthrough times than those obtained for activated carbons prepared at higher activation temperatures. The amount of toluene adsorbed in presence of water vapor in the gas stream lead to a decrease ranging from 33 to 46 % except for carbons prepared at higher temperatures activated that show only a slight decrease in the amount of toluene adsorbed. Activated carbons can be regenerated with soft heat treatment showing a slight decrease in the adsorption capacity. The high toluene adsorption capacities as well as the high breakthrough times obtained in presence of water vapor make these activated carbons suitable for commercial applications.  相似文献   

14.
《Microporous Materials》1997,8(3-4):123-130
The effect of steam activation of chars prepared from Eucalyptus globulus (EU) and peach stones (PS) on both the porosity development and the amount of oxygen surface groups is presented. The N2 (77 K) and CO2 (273 K) adsorption isotherms and the mercury intrusion measurements show that, apart from the differences in macroporosity caused by the different texture of the original precursors, the development of porosity upon activation is small for the EU char and important for the PS char. A somewhat parallel behaviour is found for the oxygen surface groups, as determined by infrared spectroscopy and temperature programmed decomposition (TPD): the development of microporosity for PS chars is accompanied by an increase in the number of oxygen surface groups stable at the activation temperature, the number being low for activated carbons from EU chars. This behaviour indicates the more important role of diffusion control of the water molecule to the interior of the particle when activating the EU char in respect to the PS char.  相似文献   

15.
The textural characterization of a series of activated carbons prepared from olive stones, by carbonization at different temperatures (400, 550, 700 and 850 °C) and thermal activation with CO2, has been investigated using N2 adsorption at −196 °C and CO2 adsorption at 0 °C. The effect of pre-oxidation of the carbonized precursor has also been studied, using temperature-programmed decomposition (TPD), to evaluate the effect of oxygen content of the chars in the performance of the obtained activated carbons for mercury removal. The adsorption of Hg(II) cations from aqueous solutions at room temperature by the prepared activated carbons was studied. Experimental results show that all samples exhibit a large microporosity (pore diameter below 0.56 nm). The amount of surface oxygen groups increased after pre-oxidation treatment, this enhancing the Hg(II) uptake (up to 72%). It can be concluded that these groups make the support more hydrophilic, thus providing a more efficient adsorption of Hg(II). The formation of a great amount of surface oxide groups such as carboxyl, phenol and lactone alters the surface charge properties of the carbon, this enhancing the surface-Hg(II) interaction.  相似文献   

16.
Adsorption of a model nitrogen vapor on a range of complex nanoporous carbon structures is simulated by grand canonical Monte Carlo simulation for a single subcritical temperature above the bulk freezing point. Adsorption and desorption isotherms, heats of adsorption, and three-dimensional singlet distribution functions (SDFs) were generated. Inspection of the SDFs reveals significant levels of solidlike adsorbate at saturation even in the most complex of the microporous solids considered. This strongly suggests that solidlike adsorbate will also occur for simple subcritical vapors adsorbed on real noncrystalline solids such as microporous carbons at temperatures above the bulk freezing point, supporting indirect experimental observations. The presence of significant levels of solidlike adsorbate has implications for characterization of microporous solids where adsorbate density is used (e.g., determination of pore volume from loading). Detailed consideration of the SDF at different loadings for a model microporous solid indicates solidlike adsorbate forms at distributed points throughout the pore space at pressures dependent on the nature of the local porosity. The nature of the local porosity also dictates the freezing mechanism. A local freezing/ melting/refreezing process is also observed. Introduction of mesoporosity into the model causes hysteresis between the adsorption and desorption isotherms. Adsorption in the hysteresis loop occurs by a series of local condensation events. It appears as if the presence of adjacent microporosity and/or adsorbate within it affects the pressure at which these events occur. Reversal of the condensation during desorption occurs throughout the mesoporosity at a single pressure; this pressure is unaffected by the presence of adjacent microporosity or the adsorbate within it. It is also shown that the empirical concept of "pore size" is not consistent for describing adsorption in the complex solids considered here. A new concept is, therefore, proposed that seeks to account for the factors that affect local adsorption energy: local geometry, microtexture, surface atom density, and surface chemistry.  相似文献   

17.
A novel corn grain precursor was used for the preparation of activated carbon by chemical activation. The detailed investigation of the porosity development in the prepared activated carbon was done by altering the various activation conditions such as the activation temperature, activation time and ratio between the powdered form of carbonized corn grain char and KOH. The surface characteristics including the surface roughness of all the activated carbon samples were evaluated from the analysis of nitrogen (N2) adsorption isotherm data. At the maximum of 2978 m2/g, a super surface area having the corn grain‐based activated carbon (CG‐AC) was synthesized by using the following conditions: 1/4 ratio of powdered form of carbonized corn grain char/KOH; 800 °C; and 4 h. The possibility of preparing highly porous activated carbons with controlled porosity by varying different activation conditions was found from the pore size distribution results. In particular, the domination of the ratio between the powdered form of carbonized corn grain char and KOH on the porosity development was high compared to the activation temperature and activation time. In addition, the surface roughness calculated from the surface fractal dimension indicates the decrease of surface roughness with increasing activation conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Carbon molecular sieves (CMS) have been prepared from locally available palm shell of Tenera type by a thermal treatment technique involving carbonization followed by steam activation and benzene deposition technique. Carbonization of the dried palm shells was done at 900 °C for duration of 1 h followed by steam activation at 830 °C for 30–420 min to achieve activated carbons with different degree of burn-offs. The highest micropore volume of activated carbon obtained at 53.2% burn-off was found suitable to be used as a precursor for CMS production. Subsequent benzene deposition onto activated samples at temperature range from 600 to 900 °C for various benzene concentrations have resulted in a series of CMS with different kinetic selectivities. The molecular sieving behaviour of the CMS products was assessed by kinetic adsorption isotherms of O2, N2, CO2 and CH4 at room temperature.  相似文献   

19.
The hydrophobic-hydrophilic character of a series of microporous activated carbons was explored as a key factor in competitive adsorption of a non-polar compound from liquid phase. The selectivity of the carbon surface towards naphthalene was explored by performing the adsorption isotherms in water, cyclohexane and heptane. Solvent polarity and adsorbent hydrophobic character were found to strongly influence the adsorption capacity of naphthalene. In aqueous media, despite the non-polar character of the adsorbate, surface acidity lowered adsorption capacity. This is attributed to the competition of water from the adsorption sites, via H-bonding with surface functionalities and the formation of hydration clusters that reduce the accessibility and affinity of naphthalene to the inner pore structure. In organic media the uptake decreased due to competition of the hydrophobic solvent for the active sites of the carbon and to solvation effects. This competitive effect of the solvent is minimized in oxidized carbons as opposed to the trend obtained in aqueous solutions. The results confirmed that although adsorption of naphthalene strongly depends on the narrow microporosity of the adsorbent, competitive adsorption of the solvent for the active sites becomes important.  相似文献   

20.
Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g?1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g?1 of methyl orange by activated carbon was achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号