首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 996 毫秒
1.
The feasibility of MoS2 layered compound as a substrate for GaN growth was investigated. GaN films were successfully grown on MoS2 by plasma-enhanced molecular beam epitaxy and the crystal quality of GaN on MoS2 was compared with that on Al2O3. For GaN grown on MoS2 substrate, it was found that the surface flatness observed by atomic force microscopy, stress in the film measured by Raman spectroscopy, optical properties measured by photoluminescence spectroscopy, and threading dislocation density observed by transmission electron microscopy show superior properties compared with that grown on Al2O3. These results suggest the layered compound such as MoS2, which has no dangling bonds on the surface and has lattice mismatching of 0.9% to GaN, has high potential for a substrate of GaN growth. Received: 1 March 1999 / Accepted: 8 March 1999 / Published online: 26 May 1999  相似文献   

2.
We report phase transition and stability of MoS2 with and without the presence of sulfur melt under high-pressure and high-temperature conditions. Rhombohedral (3R) phase is found to be a high-temperature phase of MoS2 at high pressures. Excess sulfur melt catalyzes the hexagonal (2H) to rhombohedral (3R) phase transformation and lowers the conversion temperature by more than 280 K. Boundary between 2H and 3R phases has been delineated with a negative slope. Based on experimental observations, sulfur-catalyzed 2H→3R transformation mechanisms are proposed involving atomic exchange between MoS2 and sulfur, which is different from the case of without excess sulfur that proceeds through rotation and translation of the S–Mo–S sandwich layers.  相似文献   

3.
The closed layered MoS2 nano-balls and the opened layered MoS2 nano-slices were prepared by decomposing MoS3 in hydrogen atmosphere. The obtained MoS2 nanoparticles were respectively used as catalysts for S2− oxidation into SO42− and lubricating fillers in polyoxymethylene (POM) plastic. Only basal surface could be found in the closed layered MoS2 nano-balls, which represented very low catalytic efficiency for S2− oxidation into SO42−. However, the opened layered MoS2 nano-slices were of both basal surface and rim-edge surface and showed excellent catalytic properties. Moreover, it was shown that MoS2 nano-balls could improve the self-lubrication of POM plastic in vacuum. However, MoS2 nano-slices led to the obvious degradation of POM, implying it is not a proper additive for POM. The high activity of MoS2 nano-slices for catalyzing S2−oxidation and degrading POM was ascribed to their small sizes and partly wedge-like shapes, which led to a considerable increase in the rim sites. The weak catalysis and excellent lubrication of MoS2 nano-balls were resulted from its closed structure and chemical inertness.  相似文献   

4.
ABSTRACT

Molybdenum disulfide (MoS2) is a common two-dimensional semiconductor that has been highly studied as an emerging material for catalysis and electronics. The most common material defects in MoS2 are sulfur vacancies. In order to reveal the nature of the trapped states induced by sulfur vacancies, we perform Density Functional Theory (DFT) combined with quantum dynamics calculations. According to our model, we find that the sulfur vacancies create trap states in the original band gap of monolayer MoS2 that disrupt charge transmission through the monolayer. In addition, we did not find any resonance states among the shallow states in the conduction band continuum.  相似文献   

5.
We investigated the influence of a nanometer scale film structure of a tribofilm generated from zinc dialkyldithiophosphate (ZDDP) anti-wear additive on its mechanical properties using a combined molecular dynamics (MD) and finite element (FE) method. The frictional behavior of an interface between a native iron oxide layer on steel surface and zinc metaphosphate - regarded as a model material of ZDDP tribofilm - was firstly studied using the MD method. The results showed that the iron atoms in the oxide layer diffused into the phosphate layer during the friction process. The zinc atoms in the phosphate layer also diffused into the oxide layer. Significant interdiffusion of iron and zinc atoms was observed with increasing simulation time. Thus, metallic phosphate with a gradient composition of iron and zinc atoms was formed on the phosphate/oxide interface. We then constructed an axisymmetric nanoindentation simulation model from the MD-derived structures at a certain simulation time and carried out a FE calculation. As a result, we found that the rubbed ZDDP tribofilm, including the phosphate with the gradient composition of metallic atoms, showed larger contact stiffness and hardness. The combined MD/FE simulation indicates that the tribofilm becomes stiffer and harder due to the interdiffusion of iron and zinc atoms on the tribofilm/oxide interface. We have found that the gradient composition formation in ZDDP tribofilm during friction process influences on its mechanical properties.  相似文献   

6.
The atomic-scale diffusion mechanism of boron in diamond is investigated by molecular dynamics simulation. A substitutional boron atom diffuses to the self-interstitial site when there exists a self-interstitial carbon atom in its nearest tetrahedral center and the system temperature is high. More important, the bond between boron and the self-interstitial carbon atom is never broken during the diffusion process, indicating that Bs-Ci pairs diffuse in the lattice by the interstitial mechanism. The results suggest that boron diffusion is mediated by carbon self-interstitial and not by the vacancy mechanism. In addition, the estimated activation energy and the diffusion exponential prefactor of boron diffusion in diamond are found to be 0.23 eV and 1.123×10−6cm2/s, respectively.  相似文献   

7.
Molybdenum disulfide (MoS2) nanosheets are a promising lubricant additive for enhanced engine efficiency in cars. However, high-cost production methods and poor dispersion have limited their application in industry. In this study, the ball milling process is demonstrated as a low-cost and high-efficient method for fabrication of oil-dispersible MoS2 nanosheet, and the ball milling parameters are optimized. Moreover, the lubrication effectiveness of ball-milled MoS2 nanosheet was also evaluated. Results indicated that well-dispersed MoS2 nanosheets with a size of 250 nm can be manufactured with optimized surfactants of zinc dialkyldithiphosphates (ZDDP) and polyisobutylene succinimide (PIBS) after being ball milled for 36 h. Tribological results revealed that a friction coefficient of white oil with 0.25% MoS2 nanosheets reached 0.075, much lower than that of lubricant without nanosheets (0.16). The wear scar radius of 0.015% MoS2 nanosheets was similar with that of Hertz contact, and the wear scar radius reduction reached 20% compared with that of 1% ZDDP. In addition, EDS and XPS results indicated the formation of a MoS2 and FeS tribofilm on the wear surface.  相似文献   

8.
Large-scale molecular dynamics simulations with high acceleration energy on a diamond surface were performed in order to investigate the surface erosion process. Accelerated argon or CO2 clusters (∼960 atoms, 100 keV/cluster) impacted on the (111) surface of diamond which consisted of more than 1,000,000 carbon atoms. A typical hemispherical crater appeared about 0.7 ps after the impact, and two or three-layered shockwaves were formed and propagated to certain directions, but the crater was immediately filled up with the fluidized hot carbon material due to the collective elastic recovery before the reflection of the shockwave. The impact energy of the cluster was at first transferred mainly as kinetic energy of the diamond surface in a short time, and the potential energy was activated later. The activated carbon and oxygen atoms from the impact cluster stimulated the evaporation from the diamond surface for the CO2 cluster impact while the evaporation seemed to be suppressed by the argon atoms themselves for the argon cluster impact. Received 22 November 2000  相似文献   

9.
We report a simple and effective way of fabricating molybdenum disulfide (MoS2) nanoscrolls by self‐rolling up fractured monolayer CVD‐grown MoS2 microflakes. Morphological results reveal that MoS2 nanoscrolls are formed only at newly formed edges, owing to an orientation‐specific fracture behavior. Using Raman spectroscopy, we show that the E12g Raman peak (A1g peak) for MoS2 nanoscrolls significantly red‐shifts (blue‐shifts), indicating structural change. The proposed mechanism is that the newly formed edges induced by fracture behavior self‐roll up to nanoscrolls to minimize the surface free energy, meanwhile, the serious lattice contradiction of upper sulfur plane controls the rolling directions. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
Herein, we report decreased n-type behavior of mechanically exfoliated monolayer MoS2 crystals via annealing in sulfur atmosphere. The Raman, photoluminescence, and X-ray photoelectron spectroscopy (XPS) measurements consistently suggested decreased n-type behavior of the monolayer MoS2 crystals after an hour of thermal annealing at 200 °C in sulfur atmosphere. Such decreased n-type behavior could be attributed to the reduced concentration of sulfur vacancies after the annealing, suggested by the analysis of XPS spectra. Furthermore, after the annealing in sulfur atmosphere, the monolayer MoS2 transistors exhibited positively shifted threshold voltages and reduced on-currents, confirming decreased n-type conduction. These results demonstrate that the reduction of the concentration of sulfur vacancies decreases n-type behavior in monolayer MoS2, providing valuable information on understanding the effect of sulfur vacancies on the performance of monolayer MoS2 devices.  相似文献   

11.
Apart from unique properties of layered transition‐metal dichalcogenide nanosheets like MoS2, quantum dots (QDs) from these layered materials promise novel science and applications due to their quantum confinement effect. However, the reported fabrication techniques for such QDs all involve the use of liquid organic solvents and the final material extraction from such liquid dispersions. Here a novel and convenient dry method for the synthesis of MoS2 quantum dots interspersed on few‐layer MoS2 using soft hydrogen plasma treatment followed by post‐annealing is demonstrated. The size of MoS2 nanodots can be well controlled by adjusting the working pressure of hydrogen plasma and post‐thermal annealing. This method relies on the cumulative hydrogen ion bombardment effect which can destroy the hexagonal structure of the top MoS2 layer and disintegrate the top layer into MoS2 nanodots and even QDs. Post‐thermal annealing can further reduce the size. Such MoS2 quantum dots interspersed on few‐layer MoS2 exhibit two new photoluminescence peaks at around 575 nm because of the quantum confinement effect. This dry method is versatile, scalable, and compatible with the semiconductor manufacturing processes, and can be extended to other layered materials for applications in hydrogen evolution reaction, catalysis, and energy devices.  相似文献   

12.
Lattice dynamics of lithium iron orthophosphate (LiFePO4) isostructural with olivine have been investigated using the first-principles calculations taking into account the on-site Coulomb interaction within the GGA + U scheme. Born effective charge tensors, phonon frequencies at the Brillouin zone center and phonon dispersion curves are calculated and analyzed. The Born effective charge tensors exhibit anisotropy, which gives a convincing evidence for the one-dimensional Li migration tunnel along the [010] direction in LiFePO4, which has been proposed by other theoretical calculations and experimental observation. The calculated phonon frequencies at the Γ point of the Brillouin zone show good agreement with the available experimental observations.  相似文献   

13.
《Physics letters. A》2020,384(14):126286
First-principles calculations are used to study the structure and optoelectronic properties of a van der Waals (vdW) heterostructure formed by transition metal dichalcogenide and dioxide monolayers, namely PtO2/MoS2. The calculations suggest that a two-dimensional PtO2 monolayer can be produced by exfoliation from the layered bulk α-PtO2 and may even survive at high temperature. The PtO2 monolayer is very closely matched with MoS2 to form the vdW heterostructure. With its valence-band maximum and conduction-band minimum separated in different layers, this PtO2/MoS2 heterostructure is proposed as a type-II heterostructure with strong adsorption of visible light. Consequently, it may be widely applicable in photocatalysis and photovoltaics.  相似文献   

14.
By means of the energy loss near edge structure (ELNES) analysis, the electronic structures of layered transition metal disulfides were studied. In the framework of full potential linearized augmented plane wave method, ELNES spectra of sulfur K and L2,3 edges of layered MoS2, WS2 and ReS2 have been calculated at magic angle conditions, and compared with those of bulks and the only existing experimental fine structure. Compared to the bulks, the energy differences between the main peaks in sulfur K and L2,3 edges of monolayers decrease due to the slightly larger bond lengths that it can be used as a fingerprint for monolayers. Sulfur K edges in monolayers include some main features originated from electron transition to pz (π) and px+py (σ) states and their hybridization. The overall dispersions of the sulfur L2,3 edges in all cases are similar to the d-symmetry density of states. The first two features in L2,3 edge of bulks and monolayers can be attributed to electron transition of sulfur 2p to the both unoccupied 3s-like states of sulfur and 4d states of transition metal atoms. Due to the considerable amount of s states at the energy position of a shoulder like structure in L2,3 edge of both bulks and monolayers, these structures can be assigned to the sulfur 2p electron transition to unoccupied sulfur 3s states. The other features at higher energies are due to the transition of sulfur 2p electrons to the d-symmetry states of sulfur. In addition, due to the considerable energy band gaps, it seems that the use of core–hole approximation is essential for accurate reproduction of ELNES features of transition metal disulfides.  相似文献   

15.
The surface reaction mechanism of Y2O3 atomic layer deposition (ALD) on the hydroxylated silicon surface is investigated by using density functional theory. The ALD process is designed into two half-reactions, i.e., Cp3Y (Cp = cyclopentadienyl) and H2O half-reactions. For the Cp3Y half-reaction, the chemisorbed complex is formed along with the change of metal-Cp bonding from Y-C(π) to Y-C1(σ). For the H2O half-reactions, the chemisorbed energies are increased with the relief of steric congestion around yttrium metal center. In addition, Gibbs free energy calculations show that it is thermodynamically favorable for the Cp3Y half-reactions. By comparing with the reaction of H2O with {Si}-(O2)YCp, it is thermodynamically more favorable and kinetically less favorable for the reactions of H2O with {Si}-OYCp2 as well as with {Si}-OYCp(OH).  相似文献   

16.
High-concentration H2S formed in the reduction zone of pulverized coal air-staged combustion can result into the high temperature corrosion of water wall tube of boiler, so it is of great importance to accurately predict H2S concentration for the safe operation of boilers and burners. H2S formation and evolution depends on two steps: the sulfur release from coal conversion and gas-phase reactions of sulfur species. In this study, the sulfur release characteristics from the pyrolysis of 17 coals, including 5 lignite, 9 bituminous coals and 3 anthracites, are investigated in a drop tube furnace (DTF). Sulfur release model is developed to describe the relationship between sulfur release and coal types. A global gas-phase reaction mechanism of sulfur species composed of ten reactions is used to calculate and predict the formation and evolution of H2S, COS and SO2 in the reduction zone of pulverized coal air-staged combustion. A wide range of air-staged combustion experiments of 17 coals are conducted in the DTF at different temperatures and stoichiometric ratios to validate the developed model. The results show that the prediction errors of sulfur species, including SO2, H2S and COS, are within ± 30%, which indicates that the developed prediction model of sulfur species is of great assistance for CFD modeling of actual engineering application.  相似文献   

17.
The ab initio molecular dynamics (AIMD) [1] is combined with the heuristic, successive confinement method of surveying a potential energy surface (PES) [2], thereby offering a framework for the simulation study of kinetics and equilibrium properties of metallic clusters. This approach is applied to the study of Au4, a cluster possessing a simple but specific PES, which consists of very shallow and deep basins and due to this presents a challenge to the conventional AIMD methods. Among other things, the probabilities of the transitions between isomers have been found, and on this basis, both the time-dependent and equilibrium populations of the isomers have been calculated for the conditions typical of the NeNePo experiments [3] in the femtosecond pump-probe spectroscopy.  相似文献   

18.
We have successfully synthesized inorganic–inorganic, organic–inorganic and bio-inorganic nanohybrids by applying an intercalation technique systematically to layered titanate, molybdenum disulfide (MoS2), Bi-based cuprate superconductors (Bi2Sr2Cam−1CumOy (m=1, 2, and 3; BSCCO)), and to layered double hydroxides (LDHs), those which are of high importance in terms of basic understanding of intercalation reactions and of their practical applications. The inorganic–inorganic systems such as TiO2-pillared titanate, TiO2-pillared MoS2, and CdS–MoS2 hybrids were synthesized by exfoliation–restacking method. A novel pillaring process using an osmotic swelling was developed to prepare TiO2-pillared layered titanate with a large surface area, high thermal stability, and enhanced photocatalytic activity. And the intercalation of TiO2 and/or CdS nanocluster into the two dimensional MoS2 lattice could be also realized by exfoliating and reassembling the lithiated molybdenum disulfide (LiMoS2) in the presence of cationic TiO2 and/or CdS nanocluster in an aqueous solution, respectively, to obtain the semiconductor–semiconductor hybrids. On the other hands, the organic–inorganic hybrids were achieved via intercalative complexation of iodine intercalated BSCOO with organic salt of Py–CnH2n+1I (Py=pyridine). The high-Tc superconducting intercalate with its remarkable lattice expansion can be applied as a precursor for superconducting colloids when dispersed in an appropriate solvent. This superconducting hybrid material had an unique structural feature of a superconducting-insulating-superconducting multilayer with atomically clean interfaces. Especially, this organic–inorganic nanohybrid is expected to be a promising precursor for preparing the superconducting colloidal suspension, which could be applied to the fabrication of superconducting films or wires. Recently, we were very successful in demonstrating in which the formation of bio-inorganic hybrids stabilized in the interlayer space of LDH retain their chemical and biological integrity. If necessary, LDH, as a reservoir, can be intentionally removed by dissolving it in an acidic media in such a way the interlayer biomolecules can be recovered or the intercalated biomolecules can be released from the LDH via ion-exchange reaction in electrolyte. It is, therefore, concluded that the inorganic LDH can play a role as a gene reservoir or carrier for various unstable organic or bio-molecules such as drugs and genes.  相似文献   

19.
傅重源  邢淞  沈涛  邰博  董前民  舒海波  梁培 《物理学报》2015,64(1):16102-016102
本文以钼酸钠、硫代乙酰胺为前驱体, 硅钨酸为添加剂, 成功用水热法合成高纯度纳米花状二硫化钼. 产物特性用X射线衍射(XRD)、能量色散谱(EDS)、扫描电子显微镜(SEM)进行表征. XRD和EDS图显示实验产物为二硫化钼, 且其结晶度和层状堆垛良好. SEM图谱则表明二硫化钼为纳米花状结构, 颗粒直径300 nm左右, 由几十上百片花瓣组成, 每片花瓣厚度十个纳米左右. 通过以硅钨酸为变量的梯度实验, 研究发现, 硅钨酸对于纳米花状MoS2的形成具有重要作用, 不添加硅钨酸, 无法形成纳米花状MoS2, 此外, 硅钨酸的剂量会影响合成MoS2的大小和形貌. 本文还对纳米花状二硫化钼的形成机理做了初步的讨论.  相似文献   

20.
X. Hui  R. Gao  S.L. Shang  Z.K. Liu 《Physics letters. A》2008,372(17):3078-3084
The atomic configurations of liquid and glassy Mg65Cu25Y10 alloy have been simulated in the temperature range of 300 K to 2000 K via ab initio molecular dynamics. The variations of pair correlation function (PCF), structure factor (SF), coordination number (CN) and bond pairs with the temperature for this alloy are characterized. It has been shown that the atoms are near densely packed and icosahedral type of short-range order (SRO) is predominant in the glass state. Icosahedral medium range order (MRO) can be formed by vertex or intercross connection of icosahedral SROs. In this work, an icosahedral MRO which is composed of 55 atoms has been found. It has been also clarified that Mg and Cu occupy the centre or vertex, and Y atoms only occupy the vertex of the icosahedron in this glassy alloy. It is believed that these findings have implication for understanding the glass forming mechanism of magnesium based metallic glasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号