首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this paper, the BBM-like equations with fully nonlinear dispersion, B(mn) equations: ut + (um)x − (un)xxt = 0 which exhibit solutions with compact support and with solitary patterns, are studied. The exact solitary-wave solutions with compact support and exact special solutions with solitary patterns of the equations are found by a new method. The special cases, B(2, 2) and B(3, 3), are used to illustrate the concrete scheme of our approach presented by this paper in B(mn) equations. The nonlinear equations B(mn) are addressed for two different cases, namely when m = n being odd and even integers. General formulas for the solutions of B(mn) equations are established.  相似文献   

2.
We partially characterize the rational numbers x and integers n 0 for which the sum ∑k=0 knxk assumes integers. We prove that if ∑k=0 knxk is an integer for x = 1 − a/b with a, b> 0 integers and gcd(a,b) = 1, then a = 1 or 2. Partial results and conjectures are given which indicate for which b and n it is an integer if a = 2. The proof is based on lower bounds on the multiplicities of factors of the Stirling number of the second kind, S(n,k). More specifically, we obtain for all integers k, 2 k n, and a 3, provided a is odd or divisible by 4, where va(m) denotes the exponent of the highest power of a which divides m, for m and a> 1 integers.

New identities are also derived for the Stirling numbers, e.g., we show that ∑k=02nk! S(2n, k) , for all integers n 1.  相似文献   


3.
There exists much good work in the area of usual solitons, but there appears little in the field of compacton solutions. Only a few mathematical tools were employed so far. Recently, Yan [Chaos, Solitons & Fractals 14 (2002) 1151] extended the decomposition method to seek compacton solutions of B(m,n) equation utt=(un)xx+(um)xxxx. In this paper we present a different approach, integral approach, to investigate the compacton solutions of the B(m,n) equation. Not only Yan’s results but also many new compacton solutions of the B(m,n) equation are obtained. Our approach is simple and also suitable for studying compacton solutions of some other equations.  相似文献   

4.
We consider the nonlinear parabolic equation ut = (k(u)ux)x + b(u)x, where u = u(x, t, x ε R1, t > 0; k(u) ≥ 0, b(u) ≥ 0 are continuous functions as u ≥ 0, b (0) = 0; k, b > 0 as u > 0. At t = 0 nonnegative, continuous and bounded initial value is prescribed. The boundary condition u(0, t) = Ψ(t) is supposed to be unbounded as t → +∞. In this paper, sufficient conditions for space localization of unbounded boundary perturbations are found. For instance, we show that nonlinear equation ut = (unux)x + (uβ)x, n ≥ 0, β >; n + 1, exhibits the phenomenon of “inner boundedness,” for arbitrary unbounded boundary perturbations.  相似文献   

5.
Jianxiang Li   《Discrete Mathematics》2003,260(1-3):217-221
Let G be a graph of order n, and let a and b be integers such that 1a<b. Let δ(G) be the minimum degree of G. Then we prove that if δ(G)(k−1)a, n(a+b)(k(a+b)−2)/b, and |NG(x1)NG(x2)NG(xk)|an/(a+b) for any independent subset {x1,x2,…,xk} of V(G), where k2, then G has an [a,b]-factor. This result is best possible in some sense.  相似文献   

6.
《Discrete Mathematics》1999,200(1-3):137-147
We form squares from the product of integers in a short interval [n, n + tn], where we include n in the product. If p is prime, p|n, and (2p) > n, we prove that p is the minimum tn. If no such prime exists, we prove tn √5n when n> 32. If n = p(2p − 1) and both p and 2p − 1 are primes, then tn = 3p> 3 √n/2. For n(n + u) a square > n2, we conjecture that a and b exist where n < a < b < n + u and nab is a square (except n = 8 and N = 392). Let g2(n) be minimal such that a square can be formed as the product of distinct integers from [n, g2(n)] so that no pair of consecutive integers is omitted. We prove that g2(n) 3n − 3, and list or conjecture the values of g2(n) for all n. We describe the generalization to kth powers and conjecture the values for large n.  相似文献   

7.
Let S=(a1,...,am; b1,...,bn), where a1,...,am and b1,...,bn are two nonincreasing sequences of nonnegative integers. The pair S=(a1,...,am; b1,...,bn) is said to be a bigraphic pair if there is a simple bipartite graph G=(XY, E) such that a1,...,am and b1,...,bn are the degrees of the vertices in X and Y, respectively. Let Z3 be the cyclic group of order 3. Define σ(Z3, m, n) to be the minimum integer k such that every bigraphic pair S=(a1,...,am; b1,...,bn) with am, bn ≥ 2 and σ(S)=a1 +... + amk has a Z3-connected realization. For n=m, Yin[Discrete Math., 339, 2018-2026 (2016)] recently determined the values of σ(Z3, m, m) for m ≥ 4. In this paper, we completely determine the values of σ(Z3, m, n) for m n ≥ 4.  相似文献   

8.
From GCH and Pm(κ)-hypermeasurable (1 <m<gw), we construct a model satisfying 2n = a(n) and 2ω = ω+m for a monotone a:ω→ω satisfying a(n)>n.  相似文献   

9.
For a double array {V_(m,n), m ≥ 1, n ≥ 1} of independent, mean 0 random elements in a real separable Rademacher type p(1 ≤ p ≤ 2) Banach space and an increasing double array {b_(m,n), m ≥1, n ≥ 1} of positive constants, the limit law ■ and in L_p as m∨n→∞ is shown to hold if ■ This strong law of large numbers provides a complete characterization of Rademacher type p Banach spaces. Results of this form are also established when 0 p ≤ 1 where no independence or mean 0 conditions are placed on the random elements and without any geometric conditions placed on the underlying Banach space.  相似文献   

10.
We construct the polynomial pm,n* of degree m which interpolates a given real-valued function f L2[a, b] at pre-assigned n distinct nodes and is the best approximant to f in the L2-sense over all polynomials of degree m with the same interpolatory character. It is shown that the L2-error pm,n*f → 0 as m → ∞ if f C[a, b].  相似文献   

11.
Let Q(x) be a nonnegative definite, symmetric matrix such that (Q(x))(1/2) is Lipschitz continuous. Given a real-valued function b(x) and a weak solution u(x) of div(Q▽u) = b, we find sufficient conditions in order that Q(1/2)▽u has some first order smoothness. Specifically, if Ω is a bounded open set in R~n, we study when the components of Q(1/2)▽u belong to the first order Sobolev space W_Q~(1,2)(Ω)defined by Sawyer and Wheeden. Alternately, we study when each of n first order Lipschitz vector field derivatives X_iu has some first order smoothness if u is a weak solution in Ω of ∑_(i=1)~n X′_iX_(iu) + b = 0.We do not assume that {X_i} is a Hormander collection of vector fields in Ω. The results signal ones for more general equations.  相似文献   

12.
In this paper, let(M~n, g) be an n-dimensional complete Riemannian manifold with the mdimensional Bakry–mery Ricci curvature bounded below. By using the maximum principle, we first prove a Li–Yau type Harnack differential inequality for positive solutions to the parabolic equation u_t= LF(u)=ΔF(u)-f·F(u),on compact Riemannian manifolds Mn, where F∈C~2(0, ∞), F0 and f is a C~2-smooth function defined on M~n. As application, the Harnack differential inequalities for fast diffusion type equation and porous media type equation are derived. On the other hand, we derive a local Hamilton type gradient estimate for positive solutions of the degenerate parabolic equation on complete Riemannian manifolds. As application, related local Hamilton type gradient estimate and Harnack inequality for fast dfiffusion type equation are established. Our results generalize some known results.  相似文献   

13.
In this paper we consider the variable coefficient equation ut=b(t)uux+a(t)uxx which among other applications has considerable interest in nonlinear acoustics. We present transformation properties of this generalised equation. In particular, we classify the Lie classical symmetries, the nonclassical symmetries, the potential symmetries, point and potential form preserving transformations. Finally, using these transformations we give examples of exact solutions.  相似文献   

14.
Let A be a square symmetric n × n matrix, φ be a vector from n, and f be a function defined on the spectral interval of A. The problem of computation of the vector u = f(A)φ arises very often in mathematical physics.

We propose the following method to compute u. First, perform m steps of the Lanczos method with A and φ. Define the spectral Lanczos decomposition method (SLDM) solution as um = φ Qf(H)e1, where Q is the n × m matrix of the m Lanczos vectors and H is the m × m tridiagonal symmetric matrix of the Lanczos method. We obtain estimates for uum that are stable in the presence of computer round-off errors when using the simple Lanczos method.

We concentrate on computation of exp(− tA)φ, when A is nonnegative definite. Error estimates for this special case show superconvergence of the SLDM solution. Sample computational results are given for the two-dimensional equation of heat conduction. These results show that computational costs are reduced by a factor between 3 and 90 compared to the most efficient explicit time-stepping schemes. Finally, we consider application of SLDM to hyperbolic and elliptic equations.  相似文献   


15.
Let us denote ab=max(a,b) and ab=a+b for and extend this pair of operations to matrices and vectors in the same way as in linear algebra. We present an O(n2(m+n log n)) algorithm for finding all essential terms of the max-algebraic characteristic polynomial of an n×n matrix over with m finite elements. In the cases when all terms are essential, this algorithm also solves the following problem: Given an n×n matrix A and k{1,…,n}, find a k×k principal submatrix of A whose assignment problem value is maximum.  相似文献   

16.
Pavel Podbrdský   《Discrete Mathematics》2003,260(1-3):249-253
We give a bijective proof for the identity an+2=8bn, where an is the number of noncrossing simple graphs with n (possibly isolated) vertices and bn is the number of noncrossing graphs without isolated vertices and with n (possibly multiple) edges.  相似文献   

17.
The parametric resource allocation problem asks to minimize the sum of separable single-variable convex functions containing a parameter λ, Σi = 1ni(xi + λgi(xi)), under simple constraints Σi = 1n xi = M, lixiui and xi: nonnegative integers for i = 1, 2, …, n, where M is a given positive integer, and li and ui are given lower and upper bounds on xi. This paper presents an efficient algorithm for computing the sequence of all optimal solutions when λ is continuously changed from 0 to ∞. The required time is O(GMlog2 n + n log n + n log(M/n)), where G = Σi = 1n ui − Σi = 1n li and an evaluation of ƒi(·) or gi(·) is assumed to be done in constant time.  相似文献   

18.
Let Mbe a monoid. A ring Ris called M-π-Armendariz if whenever α = a1g1+ a2g2+ · · · + angn, β = b1h1+ b2h2+ · · · + bmhmR[M] satisfy αβ ∈ nil(R[M]), then aibj ∈ nil(R) for all i, j. A ring R is called weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical. In this paper, we consider some extensions of M-π-Armendariz rings and further investigate their properties under the condition that R is weakly 2-primal. We prove that if R is an M-π-Armendariz ring then nil(R[M]) = nil(R)[M]. Moreover, we study the relationship between the weak zip-property (resp., weak APP-property, nilpotent p.p.-property, weak associated prime property) of a ring R and that of the monoid ring R[M] in case R is M-π-Armendariz.  相似文献   

19.
In this paper we investigate the behaviour of the solutions of equations ΣI=1n aixi = b, where Σi=1n, ai = 0 and b ≠ 0, with respect to colorings of the set N of positive integers. It turns out that for any b ≠ 0 there exists an 8-coloring of N, admitting no monochromatic solution of x3x2 = x2x1 + b. For this equation, for b odd and 2-colorings, only an odd-even coloring prevents a monochromatic solution. For b even and 2-colorings, always monochromatic solutions can be found, and bounds for the corresponding Rado numbers are given. If one imposes the ordering x1 < x2 < x3, then there exists already a 4-coloring of N, which prevents a monochromatic solution of x3x2 = x2x1 + b, where b ε N.  相似文献   

20.
In this paper, we provide a solution of the quadrature sum problem of R. Askey for a class of Freud weights. Let r> 0, b (− ∞, 2]. We establish a full quadrature sum estimate
1 p < ∞, for every polynomial P of degree at most n + rn1/3, where W2 is a Freud weight such as exp(−¦x¦), > 1, λjn are the Christoffel numbers, xjn are the zeros of the orthonormal polynomials for the weight W2, and C is independent of n and P. We also prove a generalisation, and that such an estimate is not possible for polynomials P of degree M = m(n) if m(n) = n + ξnn1/3, where ξn → ∞ as n → ∞. Previous estimates could sum only over those xjn with ¦xjn¦ σx1n, some fixed 0 < σ < 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号