首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The effects of both organically modified montmorillonite (OMMT) and Ni2O3 on the carbonization of polypropylene (PP) during pyrolysis were investigated. The results from TEM and Raman spectroscopy showed that the carbonized products of PP were mainly multiwalled carbon nanotubes (MWNTs). Surprisingly, a combination of OMMT and Ni2O3 led to high‐yield formation of MWNTs. X‐ray powder diffraction (XRD) and GC–MS were used to investigate the mechanism of this combination for the high‐yield formation of MWNTs from PP. Brønsted acid sites were created in degraded OMMT layers by thermal decomposition of the modifiers. The resultant carbenium ions play an important role in the carbonization of PP and the formation of MWNTs. The degradation of PP was induced by the presence of carbenium ions to form predominantly products with lower carbon numbers that could be easily catalyzed by the nickel catalyst for the growth of MWNTs. Furthermore, carbenium ions are active intermediates that promote the growth of MWNTs from the degradation products with higher carbon numbers through hydride‐transfer reactions. The XRD measurements showed that Ni2O3 was reduced into metallic nickel (Ni) in situ to afford the active sites for the growth of MWNTs.  相似文献   

2.
Montmorillonite(MMT) modified with sodium silicate can change the arrangement of its layers fromedge-face and edge-edge to face-face. With the fine dispersion of the modified MMT in water, the cation-ex-change reaction was carried out with cetyltrimethyl ammonium bromide (CTAB) to obtain organo-montmoril-lonite (OMMT). As OMMT was uniformly dispersed in methyl methacrylate (MMA) monomer, PMMA/OMMT nanocomposites were formed via a common emulsion polymerization. The products were extractedwith hot acetone and characterized by FTIR, molecular weight, X-ray diffraction(XRD), transmission elec-tron microscopy(TEM), DSC and TGA. These results show that most of the OMMT layers have been exfo-liated, while the thermal stability is increased obviously. By means of FTIR spectral analysis, the ratios ofthe macromolecular radicals‘ termination of disproportionation patterns to combination are increased with theaddition of OMMT. This result further confirms the increase of the thermal degradation temperatures andglass transition temperatures of the PMMA/OMMT nanocomposites.  相似文献   

3.
4,4′-Diphenylmethane diisocyanate (MDI) was grafted on to organic–montmorillonite (OMMT) by reaction between hydroxyl groups (−OH) on surface of the montmorillonite and the isocyanate groups (−NCO) of MDI, thus forming grafted organic–montmorillonite (MOMMT). Intercalated nanocomposites based on polyurethane (PU) and MOMMT were prepared by solution intercalation technology. The interface interaction of PU/MOMMT nanocomposites was better than that of PU/MMT composites. The tensile strength, elongation at break, and tear strength of the PU/MOMMT nanocomposites increased for MOMMT content up to 5% w/w, and then decreased with further increase in MOMMT content. At the same filler content, the tensile strength and tear strength of PU/MOMMT nanocomposites were higher than those of PU/OMMT nanocomposites, whereas the elongations at break of PU/MOMMT nanocomposites were smaller than those of PU/OMMT nanocomposites. The initial temperatures of weight loss of PU/MOMMT nanocomposites were lower than for PU/MMT composites in the first step of thermal degradation, whereas in the second step initial temperatures of weight loss were higher for PU/MOMMT nanocomposites.  相似文献   

4.
In this study, morphological properties of polypropylene (PP)/ethylene vinyl acetate copolymer (EVA) (75/25 wt/wt) blend-based nanocomposites containing various amounts of organically modified montmorillonite (OMMT) were primarily investigated. The incorporation of compatibilizer into nanocomposites decreased EVA droplet size in PP matrix while increasing compatibilizer/OMMT ratio showed a dual behavior with respect to the variations of OMMT interlayer spacing. By a rough estimation it was found that at EVA droplet size of Dn = 0.43 μm, the highest OMMT interlayer spacing would be acheived. Increasing Dn had a negative effect on the OMMT interlayer spacing. Activation energy of thermal/thermo-oxidative degradation based on Flynn model was obtained. Isothermal degradation test was also performed and desired temperature range for predicting degradation behavior was obtained by means of a free prediction model. An attempt was made to establish a correlation between morphological and thermal/thermo-oxidative parameters and also charred residue morphology. A mechanism for degradation process was proposed according to the changes of chemical bonds during the degradation process probed by FTIR analysis.  相似文献   

5.
于建 《高分子科学》2008,(6):689-696
Two master-batches,polyamide 66 (PA66)/organo-montmorillonite (OMMT) and polyamide 6 (PA6)/OMMT, prepared by melt compounding with methyl methacrylate (MMA) as co-intercalation agent,have been used to prepare nearly exfoliated PA661montmorillonite (MMT) nanocomposites.The resulting nanocomposites are compared in view of their morphology and properties.Nano-scale dispersion of OMMT is realized in both types of nanocomposites,as revealed by XRD,TEM and Molau tests.PA66/MMT nanocomposites having superior me...  相似文献   

6.
将插层聚合的概念引入烯烃聚合,制备了聚丙烯/蒙脱土(PP/MMT)纳米复合材料。X射线衍射和TEM分析结果表明,蒙脱土在聚丙烯基体中达到了纳米级的分散,动态力学性能研究结果表明,在高于Tg的温度区域内PP/MMT纳米复合材料的储能模量(E′)成倍增加,加入8%的蒙脱土(MMT),PP/MMT的E′提高近3倍。PP/MMT的玻璃化转变温度Tg有一定程度的提高,随蒙脱土含量的增加,PP/MMT的热分解温度和热变形温度(HDT)都有大幅度提高。  相似文献   

7.
用溶液复合法成功地制备了插层型PHBV/蒙脱土纳米复合材料。采用X射线衍射(XRD)和透射电子显微镜(TEM)研究了复合材料的结构,硅酸盐片层间距从1.8nm升至2.4nm左右。同时研究了复合材料的结晶,熔融,动态力学行为和力学性能,发现有机蒙脱土的加入,可以加快PHBV的结晶,降低熔融温度,使基体的玻璃化转变温度升高,提高了材料的力学性能,有机蒙脱土含量在3%时,其综合性能最佳。  相似文献   

8.
Summary: The study of the structure and the rheological properties of poly(propylene) (PP)/montmorillonite (MMT)/maleinated PP (MAPP) composites strongly suggests that a silicate network may form under certain conditions. Network formation could not be proven unambiguously with the usual techniques, i.e., with TEM and by plotting the frequency dependence of viscoelastic properties. Cole‐Cole plots detect the network very sensitively. A certain number of silicate layers are needed to create a house‐of‐cards structure. A threshold concentration of MAPP exists in the investigated system, which depends on the silicate content.

Cole‐Cole representation of the viscoelastic properties of PP/OMMT/MAPP nanocomposites.  相似文献   


9.
In the present study, polypropylene/aluminium trihydroxide/Fe‐montmorillonite (PP/ATH/Fe‐MMT) nanocomposites were prepared by melt‐intercalation method. This was been designed to determine whether the presence of structural iron in the matrix could enhance the thermal stability and flammability of nanocomposites. In order to prove the effect of Fe3+ in the structural silicate layers, samples of PP/ATH and PP/ATH/Na‐MMT (no Fe3+ in structural silicate layers) were prepared under the same conditions. Fe‐MMT and Na‐MMT were modified by cetyltrimethyl ammonium bromide (CTAB). The nanocomposite structures were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) was applied to test the thermal properties of nanocomposites. In addition, the limiting oxygen index (LOI) of PP/ATH/Fe‐MMT nanocomposites was increased, and no dripping phenomenon was found through the UL‐94 vertical burning test. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Since a few years ago, a topic of interest consists in developing composites filled with nanofillers to improve thermal degradation and flammability property of poly(methyl methacrylate) (PMMA). In the present work, the effects of ZnO nanoparticles and organo-modified montmorillonite (OMMT) on the thermal degradation of PMMA were investigated by thermogravimetric analysis (TGA). PMMA-ZnO and PMMA-OMMT nanocomposites were prepared by melt blending with different (2, 5, and 10 wt%) loadings. SEM and TEM analyses of nanocomposites were performed in order to investigate the dispersion of nanofillers in the matrix. According to TGA results, the addition of ZnO nanoparticles does not affect the thermal degradation of PMMA under an inert atmosphere. However, in an oxidative atmosphere, two contrary effects were observed, a catalytic effect at lower concentration of ZnO in the PMMA matrix and a stabilizing effect when the ZnO concentration is higher (10 wt%). In contrast, the presence of OMMT stabilizes the thermal degradation of PMMA whatever be the atmosphere. Differential thermal analysis (DTA) curves showed surprising results, because a dramatic change of exothermic reaction of the PMMA degradation process to an endothermic reaction was observed only in the case of OMMT. During the degradation of PMMA-ZnO nanocomposites, pyrolysis-gas chromatography coupled to mass spectrometer (Py-GC/MS) showed an increase in the formation of methanol and methacrylic acid while a decrease in the formation of propanoic acid methyl ester occurred. In the case of PMMA-OMMT systems, a very significant reduction in the quantity of all these degradation products of PMMA was observed with increasing OMMT concentration. It is also noted that during PMMA-OMMT degradation less energy was released as the decomposition is an endothermic reaction and the material was cooled.  相似文献   

11.
Four kinds of imidazolium surfactants with high thermal stability were designed and synthesized accordingly. The structures of these surfactants were characterized by 1H NMR spectra. The TGA results indicated that the thermal stabilities of these surfactants with saturated alkyl groups were relatively high and the initial decomposition temperatures at 5% weight loss (T0.05) were higher than 250 °C. Imidazolium(O) modified montmorillonite (MMT) was prepared by cation exchange. TGA results showed that the OMMT showed obviously higher thermal stability than the surfactants themselves and the T0.05 values of OMMT were higher than 330 °C. The dihexadecane imidazolium (DHI) with two long tails has the ability to enlarge the interlayer spacing to a bigger degree compared with other imidazolium surfactants with only one long tail. Polypropylene(PP)/OMMT nanocomposites were prepared by solution blending and the effects of these surfactants with different structures on the silicate layer dispersion in PP matrix were measured.  相似文献   

12.
陈学成  唐涛 《高分子科学》2015,33(2):329-338
A facile, efficient and environment friendly method is established to prepare poly(vinyl alcohol)(PVA) based graphene oxide-montmorillonite(GO-MMT) nanocomposites in aqueous media. GO-MMT nanohybrid is obtained by the combination of GO and MMT in water without any reducing or stabilizing agents. The formation of GO-MMT nanohybrid is due to the hydrogen bonding and crosslinking effects. The sodium ions within MMT sheets act as crosslinkers between GO sheets and MMT platelets. The resultant nanocomposites are characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA) and mechanical testing. Compared to that of pure PVA, PVA nanocomposites show enhanced thermal stabilities and mechanical properties, which results from strong interfacial adhesion of the nanoadditives in PVA matrix. The further increase in the tensile strength and modulus results from strong interaction between PVA chains and layered GO-MMT as well as good mechanical properties of GO-MMT hybrid, compared to PVA/GO and PVA/MMT nanocompsoites.  相似文献   

13.
A series of novel polydimethylsiloxane/montmorillonite (PDMS/MMT) nanocomposites was prepared. The thermal degradation behaviour of these nanocomposites was studied by means of Thermal Volatilization Analysis (TVA) and Thermogravimetric Analysis (TGA). The major degradation products were identified as cyclic oligomeric siloxanes from D3 to D7, and higher oligomeric siloxane residues. Other minor degradation products include methane, bis-pentamethylcyclotrisiloxane, propene, propanal, benzene and dimethylsilanone. The results demonstrate that the nanoclay significantly alters the degradation behaviour of the PDMS network, modifying the profile of the thermal degradation and reducing the overall rate of volatiles evolution. The results also indicate that the nanoclay promotes the formation of dimethylsilanone and benzene by inducing low levels of radical chain scission.  相似文献   

14.
聚丙烯/蒙脱土纳米复合材料的等温结晶研究   总被引:19,自引:0,他引:19  
采用差示扫描量热法 (DSC)对插层聚合法制备的聚丙烯 /蒙脱土纳米复合材料 (PP MMT)的等温结晶过程进行了研究 .引入蒙脱土 (MMT)后 ,PP MMT的结晶速率大幅度提高 ,相对结晶度略有下降 .采用Avrami方程对结晶动力学进行研究 ,Avrami指数n≈ 3 .0 ,半结晶时间t1 2 大幅度降低 .采用Hoffman理论计算了PP MMT的球晶生长的单位面积表面自由能σe,结果表明σe 随MMT含量的增加逐渐降低  相似文献   

15.
In this study, some aspects concerning the thermal decomposition of starch/poly(vinyl alcohol) (PVA)/montmorillonite (MMT) nanocomposites with 2 wt% nanoclay, prepared by melt mixing method, were studied. For these loadings, the inorganic fillers are well dispersed through the PVA/starch matrix, i.e., the nanocomposites formed are mostly intercalated hybrids. The aim of this article is to establish the effect of the nanofiller nature on the thermal decomposition of the starch/PVA/MMT nanocomposites. The thermal behavior of the 50 wt% starch/50 wt% PVA blend and its nanocomposites with 2 wt% nanoclay has been investigated by thermogravimetric analysis coupled with Fourier transform-infrared spectroscopy and mass spectrometry (MS). The volatile compounds resulting during the thermal degradation were studied by in situ vapor phase FT-IR spectroscopy and MS technique under a controlled temperature/time program. Apart from the identification of the volatile compounds, some conclusions on the nanoclays effect on the degradation mechanism and formation of the volatile compounds in accordance with the previously developed general mechanisms for PVA and starch degradation have been formulated. The clay–PVA/starch nanocomposites show completely different degradation product distribution patterns, which may be attributed to the presence of the head-to-head structures and Si–O–C linkages formed between clay and blend components.  相似文献   

16.
聚碳酸1,2-丙二酯/蒙脱土复合材料的制备与性能   总被引:2,自引:0,他引:2  
利用阳离子交换法,以十六烷基三甲基溴化铵(HTAB)改性钠基蒙脱土制备了有机改性蒙脱土(OMMT),OMMT的层间距达到了2nm,比普通的钠基蒙脱土增加了0.74nm.采用熔融插层法制备了插层-絮凝型PPC/OMMT复合材料,当复合材料中OMMT含量为5wt%时,复合材料的杨氏模量较纯PPC树脂大幅度提高了61.8%,同时玻璃化温度(Tg)提高了2.4℃,热分解温度提高了32.3℃.因此,OMMT对大幅度提高PPC的杨氏模量具有很大的潜力.  相似文献   

17.
Summary: Poly(propylene)/monoalkylimidazolium‐modified montmorillonite (PP/IMMT) nanocomposites were prepared by in situ intercalative polymerization of propylene with TiCl4/MgCl2/MMT catalyst. The PP synthesized possessed high isotacticity and molecular weight. Both wide‐angle X‐ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the nanocomposite formation with exfoliated MMT homogeneously distributed in the PP matrix. A thermal stability study revealed that the nanocomposites possess good thermal stability.

X‐ray diffraction patterns of PP/IMMT (MMT = 2.2 wt.‐%) nanocomposite before and after processing.  相似文献   


18.
A novel thermosetting polyurethane (TSPU)/organic montmorillonite (OMMT) nanocomposite has been synthesized. N‐diamino octadecyl trimethyl ammonium chloride (DODTMAC) was used as an intercalation agent to treat Na+‐montmorillonite (MMT) and form a novel kind of OMMT. Fourier transform infrared spectroscopy (FT‐IR), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA) data indicated that the MMT was successfully intercalated by this intercalation agent, as evidenced by the fact that the basal spacing of MMT galleries was expanded from 1.5 to 3.2 nm. This OMMT was used to prepare the TSPU nanocomposites. Both the reinforcing and compatibilizing performance of the filler were investigated. Tensile tests showed that the tensile strength of TSPU/OMMT‐4 was the highest, and was about 3.62 times higher than that of the pure TSPU, and also the elongation at break showed an enhancement. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) measurements illustrated that the glass transition temperature of the TSPU/OMMT‐4 nanocomposite was improved from 0.5 to 6.5 °C, which corresponded to the restriction of the soft segments of TSPU. The highest initial and center temperatures of TSPU/OMMT‐4 obtained from TGA were due to the highest retard effect of the TSPU molecular chains. WAXD studies showed that the formation of the nanocomposites in all the cases with the almost disappearance of the peaks corresponding to the basal spacing of MMT. SEM and TEM were used to investigate the morphologies of the TSPU/OMMT‐4 nanocomposite, and demonstrated that the nanocomposite was comprised of a well dispersion of a mixture of intercalated and exfoliated silicate layers throughout the matrix. It was proposed that the nano‐reinforcing effect caused by the well‐dispersed silicate layers might reduce the amount and size of voids and increase the length of the crack‐spreading path during tensile drawing. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 519–531, 2007.  相似文献   

19.
Several series of experiments were carried out to check the effect of components on the stability of PP/layered silicate nanocomposites. The amount of organophilic montmorillonite (OMMT) changed between 0 and 6, while that of maleated polypropylene (MAPP) between 0 and 50 vol%. The composites were prepared in an internal mixer at 190 °C. Mixing speed and time were changed to study the effect of processing conditions on stability. The structure of the samples was characterised by various methods, while stability by the induction time of oxidation (OIT), the onset temperature of degradation (OOT) and by colour. Contrary to numerous claims published in the literature, which indicate the positive effect of layered silicates on the stability of polymer nanocomposites, our results clearly proved that both OMMT and MAPP accelerate degradation during processing and deteriorate the properties of PP composites. Residual stability decreases drastically with increasing amounts of both components, chain scission leads to the decrease of viscosity and to inferior strength and deformability. In spite of expectations, the effect of the components is independent of each other. Discoloration is caused mainly by the inherent colour of the filler and it decreases with increasing exfoliation. The most probable reason for decreased stability is the reaction of the components with the stabilisers, but this explanation needs further verification. Processing conditions influence degradation considerably, increasing shear rate and longer residence times lead to more pronounced degradation. The basic stabilization of commercial grade polypropylenes is insufficient to protect the polymer against degradation and without additional stabilization processing under normal conditions results in products with inferior quality.  相似文献   

20.
采用微生物水性培养液降解实验法对聚对二氧环己酮/有机蒙脱土(PPDO/OMMT)纳米复合材料的生物降解性能进行了研究.通过质量、特性黏数、pH、热分析和电子扫描显微镜(SEM)研究了试样的降解过程.结果表明,在本实验条件下,PPDO/OMMT纳米复合材料降解性随着OMMT含量的增加而增加.降解90天,在微生物水性培养液...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号