首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous peptide aptamers that recognize inorganic materials have been isolated using in vitro peptide evolution systems. However, it remains unknown how peptides interact with inorganic materials or how specific those interactions are. We, therefore, assessed the target specificities of the peptide aptamer TBP-1 (RKLPDAPGMHTW) by monitoring its ability to bind 10 different metals. We found that phages displaying TBP-1 bound to Ti, Si, and Ag surfaces but not to Au, Cr, Pt, Sn, Zn, Cu, or Fe. As previously seen with Ti, binding to Si and Ag was diminished by R1A, P4A, or D5A mutation, suggesting that the same molecular mechanism underlies TBP-1 binding to all three materials. We also observed that a synthetic TBP-1 peptide mediated mineralization of both silica and Ag. It, thus, appears that although the overall chemical characteristics of Ti, Si, and Ag surfaces are dissimilar, they share a common subnanometric structure that is recognized by TBP-1.  相似文献   

2.
Peptide aptamers are molecules that bind to protein targets and are able to interfere with their functions. In the past, important achievements have been made using such peptide aptamers in different approaches and for various purposes. Peptide aptamers are comprised of a variable peptide region of 8 to 20 amino acids in length, which is displayed by a scaffold protein. An overview of the numerous scaffold proteins that have been investigated for their suitability to present peptide aptamers will be given. To identify peptide aptamers efficiently and specifically binding to a predetermined target, two eukaryotic systems have been used in multiple studies: a modified version of the Gal4 yeast-two-hybrid system and the optimized LexA interaction trap system. The two yeast systems are compared and the design of high-complexity peptide aptamer libraries for these systems is described. Although the yeast-two-hybrid system is based on intracellular interactions mammalian screens, performed in cell culture experiments, are sometimes preferred or required. We will give an overview of the mammalian selection systems available, which are based on the expression of peptide aptamers in retroviral or lentiviral vectors. We will show that the isolation and use of peptide aptamers as inhibitors of individual signaling components represents a new challenge for drug development.  相似文献   

3.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   

4.
Aptamers are single-strand oligonucleotides that are generated by the systemic evolution of ligands by exponential enrichment (SELEX) technique and that can bind to target molecules specifically. However, only a few aptamers have been developed to date against tumor markers. To utilize aptamers for tumor diagnosis, a variety of aptamers are required. Here, a single-stranded DNA aptamer specific for pro-gastrin-releasing peptide (proGRP), a marker for small cell lung cancer, was selected using SELEX. After selection, identical sequences were found in the DNA library. This sequence was selected and its binding affinity to proGRP was evaluated using surface plasmon resonance.  相似文献   

5.
Aptamers as analytical reagents   总被引:7,自引:0,他引:7  
Clark SL  Remcho VT 《Electrophoresis》2002,23(9):1335-1340
Many important analytical methods are based on molecular recognition. Aptamers are oligonucleotides that exhibit molecular recognition; they are capable of specifically binding a target molecule, and have exhibited affinity for several classes of molecules. The use of aptamers as tools in analytical chemistry is on the rise due to the development of the "systematic evolution of ligands by exponential enrichment" (SELEX) procedure. This technique allows high-affinity aptamers to be isolated and amplified when starting from a large pool of oligonucleotide sequences. These molecules have been used in flow cytometry, biosensors, affinity probe electrophoresis, capillary electrochromatography, and affinity chromatography. In this paper, we will discuss applications of aptamers which have led to the development of aptamers as chromatographic stationary phases and applications of these stationary phases; and look towards future work which may benefit from the use of aptamers as stationary phases.  相似文献   

6.
DNA nanostructures are emerging as a versatile platform for controlled drug delivery as a result of recent progress in production yield and strategies to obtain prolonged stability in biological environments. The construction of nanostructures from this unique biomaterial provides unparalleled control over structural and functional parameters. Recent applications of DNA origami-based nanocarriers for therapeutic drug delivery in preclinical phases highlight them as promising alternatives to conventional nanomaterials, as they benefit from the inherent favorable properties of DNA including biocompatibility and precise spatial addressability. By incorporating targeting aptamers and responsive properties into the nanocarrier design, more selective DNA origami-based nanocarriers are successfully prepared. On the other hand, current systems remain poorly understood in terms of biodistribution, final fate, and controlled drug release. As such, advances are needed to translate this material platform in its full potential for therapeutic applications.  相似文献   

7.
Complex DNA nanostructures have been developed as structural components for the construction of nanoscale objects. Recent advances have enabled self-assembly of organized DNA nanolattices and their use in patterning functional bio-macromolecules and other nanomaterials. Adapter molecules that bind specifically to both DNA lattices and nanomaterials would be useful components in a molecular construction kit for patterned nanodevices. Herein we describe the selection from phage display libraries of single-chain antibodies (scFv) for binding to a specific DNA aptamer and their development as adapter molecules for nanoscale construction. We demonstrate the decoration of various DNA tile structures with aptamers and show binding of the selected single-chain antibody as well as the self-assembly of mixed DNA-protein biomolecular lattices.  相似文献   

8.
Kinetically grafting G-quadruplexes onto one-dimensional DNA nanostructures with precise positioning was realized in this study. The programs hold great promise for label-free and enzyme-free detection of various targets as a result of signal amplification from G-quadruplexes, and building DNA nanostructures as scaffolds due to the molecular recognition capacity of G-quadruplex aptamers.  相似文献   

9.
Capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX) was used to select aptamers for neuropeptide Y (NPY). This is the first example of a CE-SELEX selection for aptamers that bind a target molecule smaller than itself. One of the limitations of CE-SELEX is that the aptamer must exhibit a significant mobility shift when it binds the target to facilitate fraction collection. Before this study, it was not clear if smaller targets would be capable of inducing a large enough shift in mobility for CE-SELEX to be successful. NPY is a 36-amino acid peptide (MW = 4272 g/mol), much smaller than the 80-base ssDNA used in the selection ( approximately 25 kDa). NPY binding aptamers with 300-1000 nM dissociation constants were obtained after only four rounds of selection. The specificity of the aptamers was tested using human pancreatic polypeptide (hPP). hPP is a 36-amino acid peptide with approximately 50% homology with NPY. Aptamers with up to 42-fold selectivity for NPY over hPP were observed.  相似文献   

10.
We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle.  相似文献   

11.
Li T  Du Y  Li B  Dong S 《Electrophoresis》2007,28(17):3122-3128
In this work, we report a simple and effective investigation into adaptive interactions between guanine-rich DNA aptamers and amino acid amides by CE with electrochemical (EC) detection. Argininamide (Arm) and tyrosinamide (Tym) were chosen as model molecules. On a copper electrode, Arm generated a good EC signal in 60 mM NaOH at 0.7 V (vs Ag/AgCl), while Tym was detected well on a platinum electrode at 1.3 V in 20 mM phosphate of pH 7.0. Based on their EC properties, the ligands themselves were used as indicators for the adaptive interactions investigated by CE-EC, making any step of labeling and/or modification of aptamers with indicators exempted. Hydrophilic ionic liquid was used as an additive in running buffer of CE to improve the sensitivity of Arm detection, whereas the additive was not used for Tym detection due to its negative effect. Two guanine-rich DNA aptamers were used for molecular recognition of Arm and Tym. When the aptamers were incubated with ligands, they bound the model molecules with high affinity and specificity, reflected by obvious decreases in the signals of ligands but no changes in those of the control molecules. However, the ligands were hardly affected by the control ssDNAs after incubation. The results revealed the specific recognition of Arm and Tym by the aptamers. The mechanisms for binding model molecules by aptamers were discussed. Not as expected, these aptamers were not to form the G-quartets, which were generally responsible for binding the ligands when the guanine-rich aptamers were used.  相似文献   

12.
A library of constrained peptides that form stable folded structures was screened for aptamers that bind with high affinity to the fluorescent dye Texas red. Two selected clones had binding constants to Texas red of 25 and 80 pM as phage and binding had minimal effects on the fluorescence of Texas red. The peptides interact with distinct but overlapping regions of Texas red. One peptide bound to X-rhod calcium sensors, which share the same core fluorophore as Texas red. These dyes retained calcium sensitivity when bound to the peptide. This peptide was used to label a fusion protein with X-rhod-5F in vivo, and X-rhod sensed changes in calcium locally. Thus, minimal, constrained peptides can functionally bind to environmentally sensitive dyes or other organic agents in biological contexts, suggesting tools for in vivo imaging and analysis.  相似文献   

13.
Purines and their derivatives are highly important molecules in biology for nucleic acid synthesis, energy storage, and signaling. Although many DNA aptamers have been obtained for binding adenine derivatives such as adenosine, adenosine monophosphate, and adenosine triphosphate, success for the specific binding of guanosine has been limited. Instead of performing new aptamer selections, we report herein a base-excision strategy to engineer existing aptamers to bind guanosine. Both a Na+-binding aptamer and the classical adenosine aptamer have been manipulated as base-excising scaffolds. A total of seven guanosine aptamers were designed, of which the G16-deleted Na+ aptamer showed the highest bindng specificity and affinity for guanosine with an apparent dissociation constant of 0.78 mm . Single monophosphate difference in the target molecule was also recognizable. The generality of both the aptamer scaffold and excised site were systematically studied. Overall, this work provides a few guanosine binding aptamers by using a non-SELEX method. It also provides deeper insights into the engineering of aptamers for molecular recognition.  相似文献   

14.
The development of aptamer technology considerably broadens the utility of nucleic acids as molecular recognition elements, because it allows the creation of DNA or RNA molecules for binding a wide variety of analytes (targets) with high affinity and specificity. Several recent studies have focused on developing rational design strategies for transducing aptamer-target recognition events into easily detectable signals, so that aptamers can be widely exploited for detection directed applications. We have devised a generalizable strategy for designing nonfluorescent aptamers that can be turned into fluorescence-signaling reporters. The resultant signaling probes are denoted "structure-switching signaling aptamers" as they report target binding by switching structures from DNA/DNA duplex to DNA/target complex. The duplex is formed between a fluorophore-labeled DNA aptamer and an antisense DNA oligonucleotide modified with a quencher (denoted QDNA). In the absence of the target, the aptamer hybridizes with QDNA, bringing the fluorophore into close proximity of the quencher for efficient fluorescence quenching. When this system is exposed to the target, the aptamer switches its binding partner from QDNA to the target. This structure-switching event is coupled to the generation of a fluorescent signal through the departure of QDNA, permitting the real-time monitoring of the aptamer-target recognition. In this article, we discuss the conceptual framework of the structure-switching approach, the essential features of structure-switching signaling aptamers as well as remaining challenges and possible solutions associated with this new methodology.  相似文献   

15.
Previous study of eleven different in vitro-selected RNA aptamers that bind guanosine triphosphate (GTP) with K(d)s ranging from 8 microM to 9 nM showed that more information is required to specify the structures of the higher-affinity aptamers. We are interested in understanding how the more complex aptamers achieve higher affinities for the ligand. In vitro selection produces structural solutions to a functional problem that are are as simple as possible in terms of the information content needed to define them. It has long been assumed that the simplest way to improve the affinity of an aptamer is to increase the shape and functional group complementarity of the RNA binding pocket for the ligand. This argument underlies the hypothesis that selection for higher-affinity aptamers automatically leads to structures that bind more specifically to the target molecule. Here, we examined the binding specificities of the eleven GTP aptamers by carrying out competition binding studies with sixteen different chemical analogues of GTP. The aptamers have distinct patterns of specificity, implying that each RNA is a structurally unique solution to the problem of GTP binding. However, these experiments failed to provide evidence that higher-affinity aptamers bind more specifically to GTP. We suggest that the simplest way to improve aptamer K(d)s may be to increase the stability of the RNA tertiary structure with additional intramolecular RNA-RNA interactions; increasingly specific ligand binding may emerge only in response to direct selection for specificity.  相似文献   

16.
We studied aptamer binding events in a heterogeneous format using label-free and fluorescence measurements for the purpose of developing an aptamer-based sandwich assay on a standard microtiter plate platform. The approach allowed visualization of the underlying aptamer immobilization and target binding events rather than relying on only an endpoint determination for method optimization. This allowed for a better understanding of these multi-step assays and optimal conditions specific to aptamers. α-thrombin was chosen as a prototypical analyte as two well-studied aptamers (15 and 29-mer) binding distinct epitopes are available. The Corning Epic? system, which utilizes a resonance waveguide diffraction grating in a 384-well microtiter plate format, was employed to measure relative immobilization and binding levels for various modified aptamers. Parameters investigated included the effects of aptamer orientation, label orientation, spacer length, spacer type, immobilization concentration, and binding buffer. Most notably, the 15-mer aptamer was preferable for capture over the 29-mer aptamer and aptamers with increasing poly(dT) spacer length between the biotin modification and the aptamer yielded decreased immobilization levels. This decreased immobilization resulted in increased α-thrombin binding ability for 15-mer aptamers with the poly(dT) spacer. Fluorescence measurements of fluorescein-labeled 29-mer aptamers with varying spacers were used to visualize sandwich complex formation. Using both label-free and traditional fluorescence measurements, an in-depth understanding of the overall assay was obtained, thus the inclusion of label-free measurements is recommended for future method development.  相似文献   

17.
Probing the structure of DNA aptamers with a classic heterocycle   总被引:1,自引:0,他引:1  
DNA aptamers are synthetic, single-stranded DNA oligonucleotides selected by SELEX methods for their binding with specific ligands. Here we present ethidium binding results for three related DNA aptamers (PDB code: 1OLD, 1DB6, and 2ARG)that bind L-argininamide (L-Arm). The ligand bound form of each aptamer's structure has been reported and each are found to be composed primarily of two domains consisting of a stem helical region and a loop domain that forms a binding pocket for the cognate ligand. Previous thermodynamic experiments demonstrated that the DNA aptamer 1OLD undergoes a large conformational ordering upon binding to L-Arm. Here we extend those linkage binding studies by examining the binding of the heterocyclic intercalator ethidium to each of the three aptamers by fluorescence and absorption spectrophotometric titrations. Our results reveal that ethidium binds to each aptamer with DeltaG degree's in the range of -8.7 to -9.4 kcal/mol. The stoichiometry of binding is 2:1 for each aptamer and is quantitatively diminished in the presence of L-Arm as is the overall fluorescence intensity of ethidium. Together, these results demonstrate that a portion of the bound ethidium is excluded from the aptamer in the presence of a saturating amount of L-Arm. These results demonstrate the utility of ethidium and related compounds for the probing of non-conventional DNA structures and reveal an interesting fundamental thermodynamic linkage in DNA aptamers. Results are discussed in the context of the thermodynamic stability and structure of each of the aptamers examined.  相似文献   

18.
We have applied surface plasmon resonance (SPR) spectroscopy, in combination with one-step direct binding, competition, and sandwiched assay schemes, to study thrombin binding to its DNA aptamers, with the aim to further the understanding of their interfacial binding characteristics. Using a 15-mer aptamer that binds thrombin primarily at the fibrinogen-recognition exosite as a model, we have demonstrated that introducing a DNA spacer in the aptamer enhances thrombin-binding capacity and stability, as similarly reported for hydrocarbon linkers. The bindings are aptamer surface coverage and salt concentration dependent. When free aptamers or DNA sequences complementary to the immobilized aptamer are applied after the formation of thrombin/aptamer complexes, bound thrombin is displaced to a certain extent, depending on the stability of the complexes formed under different conditions. When the 29-mer aptamer (specific to thrombin's heparin-binding exosite) is immobilized on the surface, its affinity to thrombin appears to be lower than the immobilized 15-mer aptamer, although the 29-mer aptamer is known to have a higher affinity in the solution phase. These findings underline the importance of aptamers' ability to fold into intermolecular structures and their accessibility for target capture. Using a sandwiched assay scheme followed by an additional signaling step involving biotin-streptavidin chemistry, we have observed the simultaneous binding of the 15- and 29-mer aptamers to thrombin protein at different exosites and have found that one aptamer depletes thrombin's affinity to the other when they bind together. We believe that these findings are invaluable for developing DNA aptamer-based biochips and biosensors.  相似文献   

19.
Exosomes constitute an emerging biomarker for cancer diagnosis because they carry multiple proteins that reflect the origins of parent cells. Assessing exosome surface proteins provides a powerful means of identifying a combination of biomarkers for cancer diagnosis. We report a sensor platform that profiles exosome surface proteins in minutes by the naked eye. The sensor consists of a gold nanoparticle (AuNP) complexed with a panel of aptamers. The complexation of aptamers with AuNPs protects the nanoparticles from aggregating in a high‐salt solution. In the presence of exosomes, the non‐specific and weaker binding between aptamers and the AuNP is broken, and the specific and stronger binding between exosome surface protein and the aptamer displaces aptamers from the AuNP surface and results in AuNP aggregation. This aggregation results in a color change and generates patterns for the identification of multiple proteins on the exosome surface.  相似文献   

20.
The recognition of targets such as biomacromolecules, viruses and cells by their aptamers is crucial in aptamer-based biosensor platforms and research into protein function. However, it is difficult to evaluate the binding constant of aptamers and their targets that are hard to purify and quantify, especially when the targets are undefined. Therefore, we aimed to develop a modified capillary electrophoresis based method to determine the dissociation constant of aptamers whose targets are hard to quantify. A protein target, human thrombin, and one of its aptamers were used to validate our modified method. We demonstrated that the result calculated by our method, only depending on the aptamer’s concentrations, was consistent with the classical method, which depended on the concentrations of both the aptamers and the targets. Furthermore, a series of DNA aptamers binding with avian influenza virus H9N2 were confirmed by a four-round selection of capillary electrophoresis–systematic evolution of ligands by exponential enrichment, and we identified the binding constant of these aptamers by directly using the whole virus as the target with the modified method. In conclusion, our modified method was validated to study the interaction between the aptamer and its target, and it may also advance the evaluation of other receptor–ligand interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号