首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 445 毫秒
1.
DNA origami has rapidly emerged as a powerful and programmable method to construct functional nanostructures. However, the size limitation of approximately 100 nm in classic DNA origami hampers its plasmonic applications. Herein, we report a jigsaw‐puzzle‐like assembly strategy mediated by gold nanoparticles (AuNPs) to break the size limitation of DNA origami. We demonstrated that oligonucleotide‐functionalized AuNPs function as universal joint units for the one‐pot assembly of parent DNA origami of triangular shape to form sub‐microscale super‐origami nanostructures. AuNPs anchored at predefined positions of the super‐origami exhibited strong interparticle plasmonic coupling. This AuNP‐mediated strategy offers new opportunities to drive macroscopic self‐assembly and to fabricate well‐defined nanophotonic materials and devices.  相似文献   

2.
The positioning of enzymes on DNA nanostructures for the study of spatial effects in interacting biomolecular assemblies requires chemically mild immobilization procedures as well as efficient means for separating unbound proteins from the assembled constructs. We herein report the exploitation of free‐flow electrophoresis (FFE) for the purification of DNA origami structures decorated with biotechnologically relevant recombinant enzymes: the S‐selective NADP+/NADPH‐dependent oxidoreductase Gre2 from S. Cerevisiae and the reductase domain of the monooxygenase P450 BM3 from B. megaterium. The enzymes were fused with orthogonal tags to facilitate site‐selective immobilization. FFE purification yielded enzyme–origami constructs whose specific activity was quantitatively analyzed. All origami‐tethered enzymes were significantly more active than the free enzymes, thereby suggesting a protective influence of the large, highly charged DNA nanostructure on the stability of the proteins.  相似文献   

3.
DNA nanotechnology enables the synthesis of nanometer‐sized objects that can be site‐specifically functionalized with a large variety of materials. For these reasons, DNA‐based devices such as DNA origami are being considered for applications in molecular biology and nanomedicine. However, many DNA structures need a higher ionic strength than that of common cell culture buffers or bodily fluids to maintain their integrity and can be degraded quickly by nucleases. To overcome these deficiencies, we coated several different DNA origami structures with a cationic poly(ethylene glycol)–polylysine block copolymer, which electrostatically covered the DNA nanostructures to form DNA origami polyplex micelles (DOPMs). This straightforward, cost‐effective, and robust route to protect DNA‐based structures could therefore enable applications in biology and nanomedicine where unprotected DNA origami would be degraded.  相似文献   

4.
In nucleic acid nanotechnology, designed RNA molecules are widely explored because of their usability originating from RNA’s structural and functional diversity. Herein, a method to design and prepare RNA nanostructures by employing DNA origami strategy was developed. A single‐stranded RNA scaffold and staple RNA strands were used for the formation of RNA nanostructures. After the annealing of the mixtures, 7‐helix bundled RNA tile and 6‐helix bundled RNA tube structures were observed as predesigned shapes. These nanostructures were easily functionalized by introducing chemical modification to the RNA scaffolds. The DNA origami method is extended and utilized to construct RNA nanostructures.  相似文献   

5.
A versatile, bottom‐up approach allows the controlled fabrication of polydopamine (PD) nanostructures on DNA origami. PD is a biosynthetic polymer that has been investigated as an adhesive and promising surface coating material. However, the control of dopamine polymerization is challenged by the multistage‐mediated reaction mechanism and diverse chemical structures in PD. DNA origami decorated with multiple horseradish peroxidase‐mimicking DNAzyme motifs was used to control the shape and size of PD formation with nanometer resolution. These fabricated PD nanostructures can serve as “supramolecular glue” for controlling DNA origami conformations. Facile liberation of the PD nanostructures from the DNA origami templates has been achieved in acidic medium. This presented DNA origami‐controlled polymerization of a highly crosslinked polymer provides a unique access towards anisotropic PD architectures with distinct shapes that were retained even in the absence of the DNA origami template.  相似文献   

6.
The use of DNA‐based nanomaterials in biomedical applications is continuing to grow, yet more emphasis is being put on the need for guaranteed structural stability of DNA nanostructures in physiological conditions. Various methods have been developed to stabilize DNA origami against low concentrations of divalent cations and the presence of nucleases. However, existing strategies typically require the complete encapsulation of nanostructures, which makes accessing the encased DNA strands difficult, or chemical modification, such as covalent crosslinking of DNA strands. We present a stabilization method involving the synthesis of DNA brick nanostructures with dendritic oligonucleotides attached to the outer surface. We find that nanostructures assembled from DNA brick motifs remain stable against denaturation without any chemical modifications. Furthermore, densely coating the outer surface of DNA brick nanostructures with dendritic oligonucleotides prevents nuclease digestion.  相似文献   

7.
The novel metal–organic framework Co2(bdda)1.5(OAc)1·5H2O (UoB‐3) was synthesized via a simple method at room temperature. UoB‐3 was characterized by the different methods, including X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT‐IR), N2‐adsorption/desorption and elemental analysis. The catalytic ability of UoB‐3 was detected to be excellent for primary and secondary alcohols oxidation reaction with high yields under solvent‐free conditions. Moreover, UoB‐3 was highly active for Henry reaction of different aldehydes with nitromethane in water as a green solvent. The nanocatalyst can be recycled for five consecutive cycles without losing its activity and structural rigidity. The antibacterial activity of UoB‐3 nanostructures towards Gram‐negative bacteria, Escherichia coli and Gram‐positive bacteria, Bacillus cereus was also evaluated by using an inhibition zone test. These nanostructures exhibited strong antibacterial effect against both of them. The purpose of this study was the developing metal–organic framework materials with the enhanced activity in various fields.  相似文献   

8.
DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single‐molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G‐quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3′‐ and 5′‐ends of telomeric DNA we demonstrate that the formation of G‐quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions.  相似文献   

9.
《Electrophoresis》2018,39(4):645-652
Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram‐negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram‐negative pathogens and also validated whether our system can identify Gram‐negative pathogens with the cell‐free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram‐negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX‐M group 1 to identify the ESBL producing Gram‐negative pathogens. All six target‐specific peaks were clearly separated without any non‐specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram‐negative clinical isolates, all of them were successfully identified without any non‐specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis‐causing, drug‐resistant Gram‐negative pathogens and also the major ESBL producing Gram‐negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram‐negative pathogens for sepsis patients, which is very crucial for better treatment outcomes.  相似文献   

10.
The use of DNA as a nanoscale construction material has been a rapidly developing field since the 1980s, in particular since the introduction of scaffolded DNA origami in 2006. Although software is available for DNA origami design, the user is generally limited to architectures where finding the scaffold path through the object is trivial. Herein, we demonstrate the automated conversion of arbitrary two‐dimensional sheets in the form of digital meshes into scaffolded DNA nanostructures. We investigate the properties of DNA meshes based on three different internal frameworks in standard folding buffer and physiological salt buffers. We then employ the triangulated internal framework and produce four 2D structures with complex outlines and internal features. We demonstrate that this highly automated technique is capable of producing complex DNA nanostructures that fold with high yield to their programmed configurations, covering around 70 % more surface area than classic origami flat sheets.  相似文献   

11.
The modification of the backbone properties of DNA origami nanostructures through noncovalent interactions with designed intercalators, based on acridine derivatized with side chains containing esterified fatty acids or oligo(ethylene glycol) residues is reported. Spectroscopic analyses indicate that these intercalators bind to DNA origami structures. Atomic force microscopy studies reveal that intercalator binding does not affect the structural intactness but leads to altered surface properties of the highly negatively charged nanostructures, as demonstrated by their interaction with solid mica or graphite supports. Moreover, the noncovalent interaction between the intercalators and the origami structures leads to alteration in cellular uptake, as shown by confocal microscopy studies using two different eukaryotic cell lines. Hence, the intercalator approach offers a potential means for tailoring the surface properties of DNA nanostructures.  相似文献   

12.
There is currently an urgent need for the development of new antibacterial agents to combat the spread of antibiotic‐resistant bacteria. We explored the synthesis and antibacterial activities of novel, sugar‐functionalized phosphonium polymers. While these compounds exhibited antibacterial activity, we unexpectedly found that the control polymer poly(tris(hydroxypropyl)vinylbenzylphosphonium chloride) showed very high activity against both Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus and very low haemolytic activity against red blood cells. These results challenge the conventional wisdom in the field that lipophilic alkyl substituents are required for high antibacterial activity and opens prospects for new classes of antibacterial polymers.  相似文献   

13.
Triplex nucleic acids have recently attracted interest as part of the rich “toolbox” of structures used to develop DNA‐based nanostructures and materials. This Review addresses the use of DNA triplexes to assemble sensing platforms and molecular switches. Furthermore, the pH‐induced, switchable assembly and dissociation of triplex‐DNA‐bridged nanostructures are presented. Specifically, the aggregation/deaggregation of nanoparticles, the reversible oligomerization of origami tiles and DNA circles, and the use of triplex DNA structures as functional units for the assembly of pH‐responsive systems and materials are described. Examples include semiconductor‐loaded DNA‐stabilized microcapsules, DNA‐functionalized dye‐loaded metal–organic frameworks (MOFs), and the pH‐induced release of the loads. Furthermore, the design of stimuli‐responsive DNA‐based hydrogels undergoing reversible pH‐induced hydrogel‐to‐solution transitions using triplex nucleic acids is introduced, and the use of triplex DNA to assemble shape‐memory hydrogels is discussed. An outlook for possible future applications of triplex nucleic acids is also provided.  相似文献   

14.
Immobilized antibodies are extensively employed for medical diagnostics, such as in enzyme‐linked immunosorbent assays. Despite their widespread use, the ability to control the orientation of immobilized antibodies on surfaces is very limited. Herein, we report a method for the covalent and orientation‐selective immobilization of antibodies in designed cavities in 2D and 3D DNA origami structures. Two tris(NTA)‐modified strands are inserted into the cavity to form NTA–metal complexes with histidine clusters on the Fc domain. Subsequent covalent linkage to the antibody was achieved by coupling to lysine residues. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) confirmed the efficient immobilization of the antibodies in the origami structures. This increased control over the orientation of antibodies in nanostructures and on surfaces has the potential to direct the interactions between antibodies and targets and to provide more regular surface assemblies of antibodies.  相似文献   

15.
A series of carboxamide and cyano functionalized pyridone derivatives 4a – q have been synthesized via one‐pot synthesis of various aldehydes 1a – q , acetoacetanilide 2 , and cyanoacetamide 3 . The reaction was simple and afforded pyridone derivatives in good yield, 89 to 93%. The novel pyridone derivatives were achieved by Hantzch one‐pot synthesis. Moreover, the synthesized compounds were screened against Gram‐positive and Gram‐negative bacteria and fungi for their activity. Among them, compound 4c shows highest inhibition at 4.25 mm against Staphylococcus aureus and 3.75 mm against Escherichia coli Gram‐positive and Gram‐negative bacteria, respectively.  相似文献   

16.
A practical, two‐step synthesis of crown ether functionalized pyrimidines has been developed. The reaction conditions have been optimized, and the protocol is generalized for series of substrates. These newly synthesized compounds exhibited antimicrobial activity against bacterial strains Staphylcoccus aureus (Gram‐positive) and Escherichia coli (Gram‐negative). These compounds were also found to be potent antifungal agents Aspergillus niger and Candida albicans strains, respectively.  相似文献   

17.
Free‐radical copolymerization of cyclic ketene acetals (CKAs) and vinyl ethers (VEs) was investigated as an efficient yet simple approach for the preparation of functional aliphatic polyesters. The copolymerization of CKA and VE was first predicted to be quasi‐ideal by DFT calculations. The theoretical prediction was experimentally confirmed by the copolymerization of 2‐methylene‐1,3‐dioxepane (MDO) and butyl vinyl ether (BVE), leading to r MDO=0.73 and r BVE=1.61. We then illustrated the versatility of this approach by preparing different functional polyesters: 1) copolymers functionalized by fluorescent probes; 2) amphiphilic copolymers grafted with poly(ethylene glycol) (PEG) side chains able to self‐assemble into PEGylated nanoparticles; 3) antibacterial films active against Gram‐positive and Gram‐negative bacteria (including a multiresistant strain); and 4) cross‐linked bioelastomers with suitable properties for tissue engineering applications.  相似文献   

18.
The construction of metallic nanostructures with customizable morphologies and complex shapes has been an essential pursuit in nanoscience. DNA nanotechnology has enabled the fabrication of increasingly complex DNA nanostructures with unprecedented specificity, programmability and sub-nanometer precision, which makes it an ideal approach to rationally organize metallic nanostructures. Here we report an Assemble, Grow and Lift-Off (AGLO) strategy to construct robust standalone gold nanostructures with pre-designed customizable shapes in solution, using only a simple 2D DNA origami sheet as a versatile transient template. Gold nanoparticle (AuNP) seeds were firstly assembled onto the pre-designed binding sites of the DNA origami template and then additional gold was slowly deposited onto the AuNP seeds. The growing seed surfaces eventually merge with adjacent seeds to generate one continuous gold nanostructure in a pre-designed shape, which can then be lifted off the origami template. Diverse customized patterns of templated AuNP seeds were successfully transformed into corresponding gold nanostructures with the target structure transformation percentage over 80%. Moreover, the AGLO strategy can be incorporated with a magnetic bead separation platform to enable the easy recycling of the excess AuNP seeds and DNA components.

The AGLO strategy generates complex gold nanostructures with user-designed morphologies in solution, using only a simple 2D DNA origami sheet as a versatile transient template. The products are robust and stable as standalone gold nanostructures.  相似文献   

19.
Customizable nanostructures built through the DNA‐origami technique hold tremendous promise in nanomaterial fabrication and biotechnology. Despite the cutting‐edge tools for DNA‐origami design and preparation, it remains challenging to separate structural components of an architecture built from—thus held together by—a continuous scaffold strand, which in turn limits the modularity and function of the DNA‐origami devices. To address this challenge, here we present an enzymatic method to clean up and reconfigure DNA‐origami structures. We target single‐stranded (ss) regions of DNA‐origami structures and remove them with CRISPR‐Cas12a, a hyper‐active ssDNA endonuclease without sequence specificity. We demonstrate the utility of this facile, selective post‐processing method on DNA structures with various geometrical and mechanical properties, realizing intricate structures and structural transformations that were previously difficult to engineer. Given the biocompatibility of Cas12a‐like enzymes, this versatile tool may be programmed in the future to operate functional nanodevices in cells.  相似文献   

20.
While single‐molecule sensing offers the ultimate detection limit, its throughput is often restricted as sensing events are carried out one at a time in most cases. 2D and 3D DNA origami nanostructures are used as expanded single‐molecule platforms in a new mechanochemical sensing strategy. As a proof of concept, six sensing probes are incorporated in a 7‐tile DNA origami nanoassembly, wherein binding of a target molecule to any of these probes leads to mechanochemical rearrangement of the origami nanostructure, which is monitored in real time by optical tweezers. Using these platforms, 10 pM platelet‐derived growth factor (PDGF) are detected within 10 minutes, while demonstrating multiplex sensing of the PDGF and a target DNA in the same solution. By tapping into the rapid development of versatile DNA origami nanostructures, this mechanochemical platform is anticipated to offer a long sought solution for single‐molecule sensing with improved throughput.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号