首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsteady MHD boundary layer flow of a micropolar fluid near the forward stagnation point of a two dimensional plane surface is investigated by using similarity transformations. The transformed nonlinear differential equations are solved by an analytic method, namely homotopy analysis method (HAM). The solution is valid for all values of time. The effect of MHD and porous medium, non dimensional velocity and the microrotation are presented graphically and discussed. The coefficient of skin friction is also presented graphically.  相似文献   

2.
Numerical solution is presented for the two- dimensional flow of a micropolar fluid between two porous coaxial disks of different permeability for a range of Reynolds number Re (-300≤ Re 〈 0) and permeability parameter A (1.0≤A ≤2.0). The main flow is superimposed by the injection at the surfaces of the two disks. Von Karman's similarity transformations are used to reduce the governing equations of motion to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on the finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. The results indicate that the parameters Re and A have a strong influence on the velocity and microrotation profiles, shear stresses at the disks and the position of the viscous/shear layer. The micropolar material constants cl, c2, c3 have profound effect on microrotation as compared to their effect on streamwise and axial velocity profiles. The results of micropolar fluids are compared with the results for Newtonian fluids.  相似文献   

3.
A transient free convective boundary layer flow of micropolar fluids past a semi-infinite cylinder is analysed in the present study. The transformed dimensionless governing equations for the flow, microrotation and heat transfer are solved by using the implicit scheme. For the validation of the current numerical method heat transfer results for a Newtonian fluid case where the vortex viscosity is zero are compared with those available in the existing literature, and an excellent agreement is obtained. The obtained results concerning velocity, microrotation and temperature across the boundary layer are illustrated graphically for different values of various parameters and the dependence of the flow and temperature fields on these parameters is discussed. An increase in the vortex viscosity tends to increase the magnitude of microrotation and thus decreases the peak velocity of fluid flow. An increase in the vortex viscosity in micropolar fluids is shown to decrease the heat transfer rate.  相似文献   

4.
The time periodic electroosmotic flow of an incompressible micropolar fluid between two infinitely extended microparallel plates is studied.The analytical solutions of the velocity and microrotation are derived under the Debye-H(u|¨)ckel approximation.The effects of the related dimensionless parameters,e.g.,the micropolar parameter,the frequency,the electrokinetic width,and the wall zeta potential ratio of the upper plate to the lower plate,on the electroosmotic velocity and microrotation are investigated.The results show that the amplitudes of the velocity and the volume flow rate will drop to zero when the micropolar parameter increases from 0 to 1.The effects of the electrokinetic width and the frequency on the velocity of the micropolar fluid are similar to those of the Newtonian fluid.However,the dependence of the microrotation on the related parameters mentioned above is complex.In order to describe these effects clearly,the dimensionless microrotation strength and the penetration depth of the microrotation are defined,which are used to explain the variation of the microrotation.In addition,the effects of various parameters on the dimensionless stress tensor at the walls are studied.  相似文献   

5.
The electroosmotic flow of a micropolar fluid in a microchannel bounded by two parallel porous plates undergoing periodic vibration is studied. The equations for conservation of linear and angular momentums and Gauss' s law of charge distribution are solved within the framework of the Debye-H¨uckel approximation. The fluid velocity and microrotation are assumed to depend linearly on the Reynolds number. The study shows that the amplitude of microrotation is highly sensitive to the changes in the magnitude of the suction velocity and the width of the microchannel. An increase in the micropolar parameter gives rise to a decrease in the amplitude of microrotation. Numerical estimates reveal that the microrotation of the suspended microelements in blood also plays an important role in controlling the electro-osmotically actuated flow dynamics in microbio-fluidic devices.  相似文献   

6.
We have studied the fully-developed free-convective flow of an electrically conducting fluid in a vertical channel occupied by porous medium under the influence of transverse magnetic field. The internal prefecture of the channel is divided into two regions; one region filled with micropolar fluid and the other region with a Newtonian fluid or both the regions filled by Newtonian fluids. Analytical solutions of the governing equations of fluid flow are found to be in excellent agreement with analytical prediction. Analytical results for the details of the velocity, micro-rotation velocity and temperature fields are shown through graphs for various values of physical parameters. It is noticed that Newtonian fluids prop up the linear velocity of the fluid in contrast to micropolar fluid. Also the skin friction coefficient at both the walls is derived and its numerical values are offered through tables.  相似文献   

7.
Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order. A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using the approximate method, the expressions for the velocity microrotation, temperature, and concentration are obtained. Futher, the results of the skin friction coefficient, the couple stress coefficient, and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.  相似文献   

8.
A comprehensive study of magneto hydrodynamics two‐dimensional stagnation flow with heat transfer characteristics towards a heated shrinking sheet immersed in an electrically conducting incompressible micropolar fluid in the presence of a transverse magnetic field is analyzed numerically. The governing continuity, momentum, angular momentum and heat equations together with the associated boundary conditions are first reduced to a set of self similar nonlinear ordinary differential equations using a similarity transformation and are then solved by a method based on finite difference discretization. Some important features of the flow and heat transfer in terms of normal and streamwise velocities, microrotation and temperature distributions for different values of the governing parameters are analyzed, discussed and presented through tables and graphs. The results indicate that the reverse flow caused due to shrinking of the sheet can be stopped by applying a strong magnetic field. The magnetic field enhances the shear stresses and decreases the thermal boundary layer thickness. The heat loss per unit area from the sheet decreases with an increase in the shrinking parameter. Micropolar fluids exhibit reduction in shear stresses and heat transfer rate as compared with Newtonian fluids, which may be beneficial in the flow and thermal control of polymeric processing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the Newtonian viscous fluid. The flow is driven by a constant pressure gradient. The presence of micropolar fluids introduces additional rotational parameters. Also, the porous material considered in both regions has two different permeabilities. A direct method is used to obtain the analytical solution of the concerned problem. In the present problem, the effects of the couple stress, the micropolarity parameter, the viscosity ratio, and the permeability on the velocity profile and the microrotational velocity are discussed. It is found that all the physical parameters play an important role in controlling the translational velocity profile and the microrotational velocity. In addition, numerical values of the different flow parameters are computed. The effects of the different flow parameters on the flow rate and the wall shear stress are also discussed graphically.  相似文献   

10.
An analysis is presented for the problem of free convection with mass transfer flow for a micropolar fluid via a porous medium bounded by a semi-infinite vertical porous plate in the presence of a transverse magnetic field. The plate moves with constant velocity in the longitudinal direction, and the free stream velocity follows an exponentially small perturbation law. A uniform magnetic field acts perpendicularly to the porous surface in which absorbs the micropolar fluid with a suction velocity varying with time. Numerical results of velocity distribution of micropolar fluids are compared with the corresponding flow problems for a Newtonian fluid. Also, the results of the skin-friction coefficient, the couple stress coefficient, the rate of the heat and mass transfers at the wall are prepared with various values of fluid properties and flow conditions.  相似文献   

11.
A. Ishak  R. Nazar  I. Pop 《Meccanica》2008,43(4):411-418
The mixed convection two-dimensional boundary layer flow of a micropolar fluid near the stagnation point on a stretching vertical sheet is investigated. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the stagnation point. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using a finite-difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics are analyzed and discussed. Both assisting and opposing flows are considered. Results are presented in terms of the skin friction coefficient and the local Nusselt number with selections of velocity, microrotation and temperature profiles. Dual solutions are found to exist for the opposing flow.  相似文献   

12.
Analytic expressions for speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting a steady, symmetric, and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hiickel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. Since the aciculate particles in a micropolar fluid can rotate without translation, micropolarity affects the fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies when the radius increases. The stress tensor is confined to the region near the wall of the mi- crocapillary, while the couple stress tensor is uniform across the cross-section.  相似文献   

13.
The present work investigates the micropolar fluid flow due to a permeable stretching sheet and the resulting heat transfer. Unlike the existing numerical works on the flow phenomenon in the literature, the prime interest here is to analytically work out shape of the solutions and identify whether they are unique. Indeed, unique solutions are detected and presented in the exact formulas for the associated boundary layer equations. Temperature field influenced by the microrotation is also mathematically resolved in the cases of constant wall temperature, constant heat flux and Newtonian heating. To discover the salient physical features of many mechanisms acting on the considered problem, it is adequate to have the analytical velocity and temperature fields and also closed-form skin friction/couple stress/heat transfer coefficients, all as given in the current paper. For instance, the practically significant rate of heat transfer is represented by a single formula valid for all three temperature cases.  相似文献   

14.
An analysis is presented with magnetohydrodynamics natural convective flow of a viscous Newtonian fluid saturated porous medium in a vertical slot. The flow in the porous media has been modeled using the Brinkman model. The fully-developed two-dimensional flow from capped to open ends is considered for which a continuum of solutions is obtained. The influence of pertinent parameters on the flow is delineated and appropriate conclusions are drawn. The asymptotic behaviour and the volume flux are analyzed and incorporated graphically for the three-parameter family of solution.  相似文献   

15.
The mixed convective flow of a steady, incompressible micropolar fluid over a stretching sheet has been studied. This situation may arise in polymer technology involving the stretching of plastics sheets. The resulting system of non-linear ordinary coupled differential equations has been solved by the finite element method, using the variational Ritz model. Numerical results obtained for velocity, microrotation and temperature distributions are shown graphically. It was found that an increase in the micropolar parameter leads to a faster rate of cooling of the sheet. Also the velocity increases with an increase in micropolar effects. Microrotation effects are much smaller for the no-spin boundary condition as compared to the other boundary condition which assumes that the gyration vector is identical to the angular velocity of the fluid. Received on 9 February 1998  相似文献   

16.
Two‐dimensional steady, laminar, and incompressible flow of a micropolar fluid in a channel with no‐slip at one wall and constant uniform injection through the other wall is considered for different values of the Reynolds number R. The main flow stream is superimposed by constant injection velocity at the porous wall. The micropolar model introduced by Eringen is used to describe the working fluid. An extension of Berman's similarity transformations is used to reduce governing equations to a set of nonlinear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson's extrapolation is used to obtain higher order accuracy. It has been found that the magnitude of shear stress increases strictly at the impermeable wall whereas it decreases steadily at the permeable wall, by increasing the injection velocity. The maximum value of streamwise velocity and that of the microrotation both increase with increasing the magnitude of R. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Summary  A Theoretical analysis is carried out to study the boundary-layer flow over a continuously moving surface through an otherwise quiescent micropolar fluid. The transformed boundary-layer equations are solved numerically for a power-law surface velocity using the Keller-box method. The effects of the micropolar K and exponent m parameters on the velocity and microrotation field as well as on the skin-friction group are discussed in a detailed manner. It is shown that there is a near-similarity solution of this problem. The accuracy of the present solution is also discussed. Accepted for publication 1 April 1996  相似文献   

18.
In this paper, the field equation of micropolar fluid with general lubrication theory assumptions is simplified into two systems of coupled ordinary differential equation. The analytical solutions of velocity and microrotation velocity are obtained. Micropolar fluid lubrication Reynolds equation is deduced. By means of numerical method, the characteristics of a finitely long journal bearing under various dynamic parameters, geometrical parameters and micropolar parameters are shown in curve form. These characteristics are pressure distribution, load capacity, coefficient of flow flux and coefficient of friction. Practical value of micropolar effects is shown, so micropolar fluid theory further closes to engineering application.  相似文献   

19.
This work deals with the influence of thermal radiation on the problem of the mixed convection thin film flow and heat transfer of a micropolar fluid past a moving infinite vertical porous flat plate with a slip velocity.The fluid viscosity and the thermal conductivity are assumed to be the functions of temperature.The equations governing the flow are solved numerically by the Chebyshev spectral method for some representative value of various parameters.In comparison with the previously published work,the excellent agreement is shown.The effects of various parameters on the velocity,the microrotation velocity,and the temperature profiles,as well as the skin-friction coefficient and the Nusselt number,are plotted and discussed.  相似文献   

20.
This paper considers the unsteady unidirectional flow of a micropolar fluid, produced by the sudden application of an arbitrary time dependent pressure gradient, between two parallel plates. The no-slip and the no-spin boundary conditions are used. Exact solutions for the velocity and microrotation distributions are obtained based on the use of the complex inversion formula of Laplace transform. The solution of the problem is also considered if the upper boundary of the flow is a free surface. The particular cases of a constant and a harmonically oscillating pressure gradient are then examined and some numerical results are illustrated graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号