首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A method for the determination of metolcarb and diethofencarb in apples and apple juice is developed using solid-phase microextraction (SPME) coupled with high-performance liquid chromatography (HPLC). The experimental conditions of SPME, such as the kind of extraction fiber, extraction time, stirring rate, pH of the extracting solution, and desorption conditions are optimized. The SPME is performed on a 60 microm polydimethylsiloxane/divinylbenzene fiber for 40 min at room temperature with the solution being stirred at 1100 rpm. The extracted pesticides on the SPME fiber are desorbed in the mobile phase into SPME-HPLC interface for HPLC analysis. Separations are carried out on a Baseline C18 column (4.6 i.d. x 250 mm, 5.0 microm) with acetonitrile-water (55/45, v/v) as the mobile phase at a flow rate of 1.0 mL/min, and photodiode-array detection at 210 nm. For apple samples, the method is linear for both metolcarb and diethofencarb in the range of 0.05-1.0 mg/kg (r > 0.99), with a detection limit (S/N = 3 ) of 15 and 5 microg/kg, respectively. For apple juice, the method is linear for both metholcarb and diethofencarb over the range of 0.05-1.0 mg/L (r > 0.99) with the detection limit (S/N = 3 ) of 15 and 3 microg/L, respectively. Excellent recovery and reproducibility values are achieved. The proposed method is shown to be simple, sensitive, and organic solvent-free, and is suitable for the determination of the two pesticides in apples and apple juice.  相似文献   

2.
A method based on solid-phase microextraction (SPME) and gas chromatography with flame ionization detection (GC-FID) has been optimized for the determination of benzene, toluene, ethylbenzene and xylenes (BTEX) in water released from a waste treatment plant. The extraction step was optimized using fractional factorial and central composite designs including the following experimental factors: saline concentration; extraction time; desorption time; agitation velocity; headspace volume. A multiple function was used to describe the experimental conditions for simultaneous extraction of the compounds. The procedure, based on direct SPME at 50 degrees C, using a polydimethylsiloxane fiber, showed good linearity (r>0.997 over a concentration range 2-200 microg L(-1)) and repeatability (relative standard deviation (RSD)<4.23%) for all compounds, with limits of detection ranging from 0.05 to 0.28 microg L(-1), and limits of quantification ranging from 0.14 to 0.84 microg L(-1). Concentrations of the target compounds in these samples were between 145.8 and 1891 microg L(-1).  相似文献   

3.
In this work, a new method for the determination in white wines of 12 pesticides widely used in vine cultivars (namely, carbendazim, pirimicarb, metalaxyl, pyrimethanil, procymidone, nuarimol, azoxystrobin, tebufenozide, fenarimol, benalaxyl, penconazole, and tetradifon) using solid-phase microextraction (SPME) and MEKC with diode-array detection (DAD) was developed. The MEKC buffer consisted of 100 mM sodium tetraborate and 30 mM SDS at pH 8.5 with 6% v/v 1-propanol. Reversed-electrode polarity stacking mode (REPSM) was applied as on-line preconcentration strategy. In order to carry out an effective and sensitive determination of these pesticides in wine samples, an off-line SPME procedure was optimized by means of an experimental design. After studying the extraction performance of different SPME coatings, PDMS/divinylbenzene (PDMS/DVB) fibers were found the most appropriate for the extraction of most of these pesticides. Carbendazim and metalaxyl could not be extracted from wine samples. Calibration curves for extracted standards and fortified white wines were studied in order to determine the presence of a matrix effect. The combination of both preconcentration procedures (SPME and REPSM) allowed the determination of ten of these pesticides in white wines at concentrations between 0.054 and 0.113 mg/L. (i.e., levels well below the maximum residue limits (MRLs) allowed for these compounds in wine grapes). Ten homemade wines were they analyzed with the optimized method demonstrating the usefulness of the proposed procedure.  相似文献   

4.
This work compares two miniaturised sample preparation methods, solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HF-LPME), in combination with gas chromatography coupled to tandem mass spectrometry with a triple quadrupole analyzer for the determination of 77 pesticides in drinking water. In the case of SPME, extraction temperature and time were optimized by experimental design, although other parameters, as desorption time, pH, and ionic strength, were also evaluated. The extraction and desorption solvents [octanol/dihexyl ether (75:25, v/v) and cyclohexane, respectively], as well as the extraction and desorption time, ionic strength, and pH, were studied for the HF-LPME procedure. Under the optimal conditions, recoveries (70.2–113.5% for SPME and 70.0–119.5% for HF-LPME), intra-day precision (2.1–19.4% for SPME and 4.3–22.5% for HF-LPME), inter-day precision (5.2–21.5% for SPME and 8.4–27.3% for HF-LPME), and limits of detection, between 0.1 and 28.8 ng/L for SPME and 0.2 and 47.1 ng/L for HF-LPME and overall uncertainty (9.6–25.2% for SPME and 13.3–27.5% for HF-LPME) were established for both extraction procedures. Finally, the proposed methods were successfully applied to the analysis of 41 drinking water samples, and similar results were obtained with both extraction approaches.  相似文献   

5.
In this work, the analysis of a group of four fungicides (pyrimethanil, nuarimol, procymidone and cyprodinil) and one insecticide (pirimicarb) by micellar electrokinetic chromatography (MEKC) with UV detection using the on-line preconcentration strategy called reversed electrode polarity stacking mode (REPSM) is proposed. After optimisation, an adequate separation electrolyte for the separation and stacking of these pesticides was obtained which consisted of 100 mM borate, 60 mM sodium dodecyl sulphate (SDS), at pH 9.0 and 2% 2-propanol. The use of this running buffer together with the REPSM preconcentration method provided limits of detection (LODs) between 38.3 and 241 microg/L. In order to apply the developed methodology for the analysis of these pesticides in wine samples, several off-line preconcentration strategies (mainly, solid-phase extraction, SPE, and solid-phase microextraction, SPME) were tested. Although the use of a SPE procedure, optimized in this work for water samples, using Oasis HLB cartridges, provided mean recovery values between 79 and 100% for spiked water samples, it could not be applied to the extraction of these pesticides from wine samples due to high interference from the sample matrix. However, the use of a SPME procedure using polydimethylsiloxane/divynilbenzene (PDMS/DVB) fibers allowed the selective extraction of four of the five pesticides which could be perfectly determined. The final combination of the off-line SPME and on-line REPSM preconcentration strategies allowed obtaining LODs between 17.6 and 32.3 microg/L.  相似文献   

6.
An analytical scheme for the determination of several organochlorine pesticides like hexachlorocyclohexanes (HCHs) and DDX compounds (p,p'-DDE, p,p'-DDD, and p,p'-DDT) as well as chlorobenzenes in strawberries has been developed. The procedure is based on aqueous accelerated solvent extraction (ASE) followed by solid-phase microextraction (SPME) or stir bar sorptive extraction (SBSE) and subsequent thermodesorption-gas chromatography/mass spectrometry analysis. A 65 microm polydimethylsiloxane/ divinylbenzene fiber was chosen for the SPME experiments. Significant SPME and ASE parameters were optimized using spiked water and strawberry samples. For the ASE of the organochlorine compounds, a water-acetone mixture (90 + 10, v/v) as the extraction solvent, an extraction temperature of 120 degrees C, and 2 cycles of 10 min extraction proved optimal. The developed method was evaluated with respect to precision and limits of detection (LOD). The relative standard deviations of replicate ASE-SPME determinations (n = 5) were in the range of 4-24%. LOD values between 1 and 10 microg/kg were achieved with the exception of DDT and DDE (40 microg/kg). Using SBSE, the LOD of these compounds could be improved (2 and 5 microg/kg). The main advantages of this method are the avoidance of cleanup and concentration procedures as well as the significant reduction of the required volume of organic solvents. The described method was applied to the determination of the pollutants in strawberry samples collected from different allotment gardens in a potentially polluted area, the Bitterfeld-Wolfen region (Germany).  相似文献   

7.
A headspace solid-phase microextraction (HS-SPME) procedure has been developed and applied for the determination of cyanogen halides in treated water samples at microg/L concentrations. Several SPME coatings were tested, the divinylbenzene-Carboxen-polydimethylsiloxane fiber being the most appropriate coating. GC-electron-capture detection was used for separation and quantitation. Experimental parameters such as sample volume, addition of a salt, extraction time and desorption conditions were studied. The optimized method has an acceptable linearity, good precision, with RSD values <10% for both compounds, and it is sufficiently sensitive to detect ng/L levels. HS-SPME was compared with liquid-liquid microextraction (US Environmental Protection Agency Method 551.1) for the analysis of spiked ultrapure and granular activated carbon filtered water samples. There was good agreement between the results from both methods. Finally, the optimized procedure was applied to determine both compounds at the Barcelona water treatment plant (N.E. Spain). Cyanogen chloride in treated water was <1.0 microg/L and cyanogen bromide ranged from 3.2 to 6.4 microg/L.  相似文献   

8.
An analytical procedure based on headspace solid-phase microextraction (SPME) coupled to GC-flame ionization detection/Negative Chemical Ionization Mass Spectrometry has been developed for the determination of free volatile fatty acids (C2-C7) in waste water samples. Five different coatings have been evaluated and polydimethylsiloxane-Carboxen was the only fiber that allows a successful extraction of the shortest chain fatty acids (acetic and propionic). Several parameters such as extraction time and temperature, desorption conditions, agitation speed and sample volume have been optimized using the polydimethylsiloxane-Carboxen fiber. The linear dynamic range was over two-four orders of magnitude, depending on the acid. Procedural detection limits were in the low to medium microg/l levels and the RSDs were between 5.6% and 13.3%. To evaluate the applicability of the developed SPME procedure on real samples, fermented urban wastewaters were analysed.  相似文献   

9.
This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.  相似文献   

10.
In this study a direct solid-phase microextraction (SPME) procedure has been developed for the determination of carbofuran in water. Experimental parameters such as selection of SPME coating, effect of temperature, effect of salt addition and solvent desorption were studied and optimized. Analytical parameters such as linearity, precision, detection and quantitation limits, and matrix effects for solid-phase extraction (SPE) and SPME methods were evaluated for comparison purposes with the aim of selecting the most appropriate depending on the detection capabilities required. SPE and SPME were followed by high-performance liquid chromatography with diode-array detection, using a 50 x 4.6 mm I.D. guard column and a 150 x 4.6 mm I.D. analytical column, both packed with C18 silica. Both methods can be applied to real samples and give the same results, but SPE allows the detection of lower carbofuran concentrations (0.06 microg/L) as compared to  相似文献   

11.
This study evaluates solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) to determine trace levels of amphetamine and methamphetamine in serum. Headspace post-derivatization in a laboratory-made design with heptafluorobutyric anhydride vapor following SPME was compared with that without derivatization SPME. The SPME experimental procedures to extract amphetamine and methamphetamine in serum were optimized with a relatively non-polar poly(dimethylsiloxane) coated fiber at pH 9.5, extraction time for 40 min and desorption at 260 degrees C for 2 min. Experimental results indicate that the concentration of the serum matrix diluted to a quarter of original (1:3) ratio by using one volume of buffer solution of boric acid mixed with sodium hydroxide and two volumes of water improves the extraction efficiency. Headspace derivatization following SPME was performed by using 6 microl 20% (v/v) heptafluorobutyric anhydride ethyl acetate solution at an oil bath temperature of 270 degrees C for 10 s. The precision was below 7% for analysis for without derivatization and below 17% for headspace derivatization. Detection limits were obtained at the ng/l level, one order better obtained in headspace derivatization than those achieved without derivatization. The feasibility of applying the methods to determine amphetamine and methamphetamine in real samples was examined by analyzing serum samples from methamphetamine abused suspects. Concentrations of the amphetamine and methamphetamine ranged from 6.0 microg/l (amphetamine) to 77 microg/l (methamphetamine) in serum.  相似文献   

12.
A solid-phase microextraction (SPME) method has been developed for the determination of 7 pyrethroid insecticides (bifenthrin, lambda-cyhalothrin, permethrin, cyfluthrin, cypermethrin, fenvalerate, and tau-fluvalinate) in water, vegetable (tomato), and fruit (strawberry) samples, based on direct immersion mode and subsequent desorption into the injection port of a GC/MS. The SPME procedure showed linear behavior in the range tested (0.5-50 microg L(-1) in water and 0.01-0.1 mg kg(-1) in tomato) with r(2) values ranging between 0.97 and 0.99. For water samples limits of detection ranged between 0.1 and 2 microg L(-1 )with relative standard deviations lower than 20%. Detection limits for tomato samples were between 0.003 and 0.025 mg kg(-1) with relative standard deviations around 25%. Finally, the SPME procedure has been applied to vegetable (tomato) and fruit (strawberry) samples obtained from an experimental plot treated with lambda-cyhalothrin, and in both cases the analyte was detected and quantified using a calibration curve prepared using blank matrix. SPME has been shown to be a simple extraction technique which has a number of advantages such as solvent-free extraction, simplicity, and compatibility with chromatographic analytical systems. Difficulties with the correct quantification in a complex matrix are also discussed.  相似文献   

13.
When explosives are present in natural aqueous media, their concentration is usually limited to trace levels. A preconcentration step able to remove matrix interferences and to enhance sensitivity is therefore necessary. In the present study, we evaluated solid-phase microextraction (SPME) technique for the recovery of nine explosives from aqueous samples using high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Several parameters, including adsorption and desorption time, coating type, rate of stirring, salt addition, and pH, were optimized to obtain reproducible data with good accuracy. Carbowax coating was the only adsorbent found capable of adsorbing all explosives including nitramines. Method detection limits (MDL) were found to range from 1 to 10 microg/L, depending on the analyte. SPME/HPLC-UV coupling was then applied to the analysis of natural ocean and groundwater samples and compared to conventional solid-phase extraction (SPE/HPLC-UV). Excellent agreement was observed between both techniques, but with an analysis time around five times shorter, SPME/HPLC-UV was considered to be applicable for quantitative analysis of explosives.  相似文献   

14.
固相微萃取-高效液相联用分析环境水样中的痕量■   总被引:6,自引:1,他引:6  
 应用固相微萃取与高效液相联用技术 (SPME HPLC)分析了环境水样中的痕量 艹屈 。对SPME的条件如萃取时间、萃取温度、离子强度、解吸方式、解吸溶剂、解吸时间和HPLC条件进行了优化 ,建立了SPME HPLC分析环境水样中痕量 艹屈 的方法 ,并将其用于分析自来水、雨水、矿泉水和江水等实际水样。方法的线性范围为 0 0 13μg/L~ 3 0 μg/L ,检出限为 2 7ng/L ,相对标准偏差 (RSD ,n =6 )为 5 6 % ,回收率为 10 3 2 %~ 119 3%。该方法适合于环境水样中痕量 艹屈 的分析 ,体现了SPME在样品前处理中快速、灵敏、简单、无溶剂的特点。  相似文献   

15.
A solid-phase microextraction (SPME) method has been developed for the determination of pentachlorophenol (PCP) in paper and board samples. The analytical procedure involves direct extraction of PCP from paper and board samples and determination by gas chromatography with electron capture detection (GC-ECD). Two kinds of commercially available fibres; 100 microm polydimethylsiloxane (PDMS), apolar, and 85 microm polyacrylate (PA), quite polar, were evaluated to determine the extraction efficiency of pentachlorophenol. Parameters affecting the extraction process, such as temperature and time, were studied. Moreover, time of desorption and the effect of addition of salt were also investigated. The optimized procedure was applied to the analysis of pentachlorophenol (PCP) in five samples of virgin and recycled paper and board. The PCP content was determined by GC-ECD. To evaluate the effectiveness of the proposed method, it was compared with conventional extraction method with liquid-liquid extraction and derivatization. Detection limit of 0.015 microg/g for PCP in paper was achieved with a RSD of 14%.  相似文献   

16.
A multi-residual method is described for the simultaneous determination of 23 personal care products (PCPs), which display a wide range of physicochemical properties, present at trace levels in water samples. A one-step procedure was developed based on solid-phase microextraction (SPME) coupled with GC-MS analysis. A chemometric approach consisting of an experimental design (design of experiments) was applied to systematically investigate how four operating parameters—extraction temperature and time and desorption temperature and time—affect extraction recovery of PCPs in water. The optimum SPME procedure operating conditions, those yielding the highest extraction recovery for all the compounds, were determined; they correspond to an extraction time of 90 min and temperature of 80 °C and a desorption time of 11 min and temperature of 260 °C. Under these optimized conditions, the SPME procedure shows good analytical performance characterized by high reproducibility (RSD% intra-day accuracy varying in the 0.01–1.3% range) as well as good linearity and low detection limits (LODs lower than 2 ppb for most of the investigated PCPs).  相似文献   

17.
C18-MCM-41新型涂层在固相微萃取中的应用   总被引:2,自引:1,他引:1  
固相微萃取(SPME)是集采样、萃取和富集于一体的样品前处理技术,该技术于1990年由Pawliszyn提出。由于其不使用有机溶剂,且简便、快速、样品用量少,因而,倍受分析工作者的青睐。  相似文献   

18.
建立了工业苯酚中有机杂质的固相微萃取-气相色谱(SPME-GC)分析方法。实验考察了SPME萃取温度和萃取时间的影响,同时也优化了热解吸时间。优化后的萃取温度为20 ℃,萃取时间为10 min,热解吸时间为30 s。使用此法对工业苯酚样品中的两种主要有机杂质进行了分析检测,结果表明: 2-甲基苯并呋喃和2,4-二苯基-4-甲基-1-戊烯分别在0.05~1.06 mg/L和0.05~0.99 mg/L范围内线性关系良好(r2分别为0.990和0.992),检出限分别为0.5和1.6 μg/L。在0.1 mg/L的添加水平下,2-甲基苯并呋喃和2,4-二苯基-4-甲基-1-戊烯的回收率分别为104%和113%。该方法具有简单、快速、灵敏度高等优点,适合于工业苯酚中这两种主要痕量有机杂质的准确定量分析。  相似文献   

19.
Hu X  Pan J  Hu Y  Huo Y  Li G 《Journal of chromatography. A》2008,1188(2):97-107
Molecularly imprinted polymer (MIP) is widely used in many fields because of its characteristics of high selectivity, chemical stability and easy preparation. To enhance the selectivity and applicability of solid-phase microextraction (SPME), a novel MIP-coated SPME fiber was firstly prepared by multiple co-polymerization method with tetracycline as template. It could be coupled directly to high-performance liquid chromatography (HPLC) and used for trace analysis of tetracyclines (TCs) in complicated samples. The characteristics and application of the fibers were investigated. The electron microscope provided a crosslinked and porous surface, and the average thickness of the MIP coating was 19.5 microm. Compared with the non-imprinted polymer (NIP) coated fibers, the special selectivity to tetracycline and structure-similar oxytetracycline, doxycycline, chlortetracycline were discovered with the MIP-coated fibers. The adsorption and desorption of TCs with the MIP-coated fiber could be achieved quickly. A method for the fluorimetric determination of four TCs by the MIP-coated SPME coupled with HPLC was developed. The optimized extraction conditions such as extraction solvent, desorption solvent, and stirring speed were studied. Linear ranges for the four TCs were 5.00-200 microg/L and detection limits were within the range of 1.0-2.3 microg/L. The method was applied to simultaneous multi-residue analysis of four TCs in the spiked chicken feed, chicken muscle, and milk samples with the satisfactory recoveries.  相似文献   

20.
A direct solid-phase microextraction (SPME) procedure has been developed and applied for the simultaneous determination of nonylphenol, nonylphenol mono- and diethoxylates and their brominated derivatives in raw and treated water at low microg l(-1) concentrations. Several parameters affecting the SPME procedure, such as extraction mode (headspace or direct-SPME), selection of the SPME coating, extraction time, addition of organic modifiers such as methanol and temperature were optimized. The divinylbenzene-carboxen-polydimethylsiloxane fiber was the most appropriate one for the determination of nonylphenol ethoxylates (NPEOs) and bromononylphenol ethoxylates (BrNPEOs) by SPME-GC-MS. The optimized method was linear over the range studied (0.11-2.5 microg l(-1)) and showed good precision, with RSD values between 4 and 15% and detection limits ranging from 30 to 150 ng l(-1) depending on the compound. The SPME procedure was compared with a solid-phase extraction-GC-MS method (C18 cartridge) for the analysis of NPEO and BrNPEOs in water samples. There was good agreement between the results from both methods but the SPME procedure showed some advantages such as lower detection limits, a shorter analysis time and the avoidance of organic solvents. The optimized SPME method was applied to determine nonylphenol and brominated metabolites in raw and treated water of Barcelona (NE Spain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号