首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The morphology of homogeneous copolymers of ethene and 1-octene synthesized using a V-based Ziegler-Natta catalyst was studied as a function of the short chain branching content (SCBC) and the molar mass. Linear polyethylenes (LPE) were used as reference material. For the linear samples an increase in molar mass results in an increase of the long period and the crystalline lamella thickness. A decrease of cooling rate results in an increase of the melting temperature, the long period and the crystalline lamella thickness and an evolution from spherulitic structures to perfectly stacked lamellae. For the branched samples, increasing the SCBC results in a decrease of the melting and the crystallization temperature, crystallinity, spherulite radius, the long period, and the crystalline lamella thickness. The two latter tend to a limiting value on reaching a SCBC of 20CH3/1000C. On the other hand, an increase of the a axis and to a lesser extent the b axis of the unit cell is observed. Decreasing the cooling rate affects only the crystallinity of the least branched samples. Furthermore decreasing the cooling rate results in smaller spherulites, has a minor influence on the lamellar parameters and reduces the dimensions of the basal plane of the unit cell. Increasing the molar mass of the branched samples results in a drop of the crystallinity, a deterioration of the superstructure, enlarges the amorphous layer thickness and the dimensions of the basal plane. All these observations can be accounted for by the different crystallization regimes being applicable when different molar masses, SCBC and cooling rates are used. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2689–2713, 1997  相似文献   

2.
This paper is devoted to the study of crystallization and melting of two metallocene polyethylenes (m-PEs). A metallocene linear low density polyethylene (m-LLDPE) and a metallocene very low density polyethylene (m-VLDPE) were used consisting of 3.3 mol% butyl and 6 mol% ethyl branches, respectively. Several melt endotherms after stepwise crystallization revealed that the two m-PEs consisted of molecular fractions with different molecular weight and branch distribution. More segregation was observed for the m-VLDPE comparing with m-LLDPE. Using the relationships proposed by Hosoda, the short chain branching distribution (SCBD) and the average methylene groups in the lamella thickness were also calculated for the two polymers. These values were compared with the values obtained from theory of rubber elasticity. There was a very good correlation between the data.  相似文献   

3.
The melting behaviour of poly(vinylidene fluoride) (PVDF) was investigated by differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering in order to study the influence of the chain defects content and of the temperature of annealing on the crystallization and melting behaviour.All the DSC scans show a double endotherm and the analysis of the data suggests that the low temperature endotherm is due to the melting of a population of thin lamellae, whose thickness increases during the annealing, but a high content of chain defects prevents the lamellar thickening and the main effect in this case is the crystallization of thin lamellae from a portion of polymer which did not crystallize during the quenching from the melt. Furthermore, the two melting endotherms, which are observed, can be partially ascribed to a melting-recrystallization process.Furthermore, stepwise isothermal cooling was performed in a differential scanning calorimeter followed by melting scans of fractionated PVDF samples to point out the possible presence of a series of endothermic peaks.  相似文献   

4.
This study demonstrates that the step-heating calorimetry, which is a kind of temperature-modulated differential scanning calorimetry, can provide valuable information on the polymer melting. Time-dependent heat flow due to the melting of lamellar crystallites in a narrow range of thickness can be directly observed, from which thickness distribution of lamellar crystallites and thickness dependence of the melting kinetics are deduced. A sample of poly(ε-caprolactone) was used as a model material of semi-crystalline polymer, which has high crystallinity (0.79) so that no recrystallization and/or reorganization occur during melting in the step-heating scan. It was revealed that superheating dependence of the melting rate coefficient increases with increasing lamellar thickness, which may be attributed to variation of the fold surface roughness with respect to lamellar thickness. Analysis based on the cylindrical nucleation model revealed much lower free energy values of lateral surface than that evaluated from crystallization behavior, suggesting that the nucleus for melting is more stable than that for crystallization.  相似文献   

5.
The crystal structure produced during the isothermal crystallization of polyethylene (PE) copolymers with a broad range of comonomer concentrations was determined by the measurement of the melting endotherms directly after crystallization. PE copolymers with higher concentrations of short‐chain branches (≥10 branches per 1000 total carbon atoms) exhibited strong resistance to crystal thickening during isothermal crystallization. Negligible thickening, estimated to be only about 0.1 nm in 10 min of isothermal crystallization, was observed. The side‐chain branches apparently acted as limiting points of chain incorporation into the crystals, which exhibited great resistance to the modification of their position, that is, crystal thickening. Even with long periods (up to 8 h) of isothermal storage, crystal thickening was very small or negligible, about 0.3 nm. The crystal thickness was calculated from differential scanning calorimetry data. The behavior of copolymers with lower branching concentrations and the unbranched PE homopolymer was quite different from that of the copolymers with higher branching. Polymers with low or no branching exhibited the initial crystallization of a thinner crystal population, which thickened substantially with increasing time. The thickening observed for these lower or unbranched polymers was an order of magnitude larger, that is, 1.6–2.0 nm in 10 min of isothermal crystallization. Copolymers with higher concentrations of branching had relatively short sequence lengths of ethylene units between branch points, and this resulted in strong control over the crystal thickness by the branch points and great resistance to crystal thickening, even with long times of isothermal crystallization. Copolymers with low concentrations of branching had relatively long sequence lengths of ethylene units between branch points, and this resulted in little control over the crystal thickness by the branch points and rapid crystal thickening upon isothermal crystallization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 235–246, 2003  相似文献   

6.
茂金属聚乙烯的非等温结晶行为及其动力学研究   总被引:15,自引:0,他引:15  
为探索分子量和支链含量对聚乙烯非等温结晶过程的影响,选用3组样品:(1)不同分子量的无支链线形聚乙烯;(2)低分子量的支链含量不同的试样;(3)高分子量的支链含量不同的试样.用DSC研究了这3组样品的非等温结晶动力学.结果表明:(1)与支链含量相比,分子量大小对结晶的影响是次要的,但高分子量样品的结晶度比低分子量样品低;(2)支链对聚乙烯的非等温结晶有重要影响,在支化聚乙烯中起决定作用;(3)无论是高分子量试样还是低分子量试样,支化含量增加,聚乙烯的结晶温度、结晶度、结晶动力学以及晶体的熔点等显著降低.  相似文献   

7.
Linear low density polyethylene/polyisobutylene blends were prepared in the entire composition range. Non-isothermal and isothermal crystallization of the samples was carried out and melting behavior was studied as a function of composition and crystallization temperature. The equilibrium melting temperature of the neat PE and the blends was determined by the Hoffman-Weeks extrapolation technique. Flory-Huggins interaction parameters were calculated by the approach of Nishi and Wang. The decrease of melting temperature with increasing PIB content indicated the interaction of the polymers in the melt. Both irregular chain structure of the crystalline polymer and interaction lead to a decrease of the equilibrium melting temperature and maximum lamellar thickness. The results prove that even relatively weak dispersive forces can lead to the miscibility of two polymers.  相似文献   

8.
Ethylene copolymers exhibit a broad range of comonomer distributions. Thermal fractionation was performed on different grades of copolymers in a differential scanning calorimeter (DSC). Subsequent melting scans of fractionated polyethylenes provided a series of endothermic peaks each corresponding to a particular branch density. The DSC melting peak temperature and the area under each fraction were used to determine the branch density for each melting peak in the thermal fractionated polyethylenes. High-density polyethylene (HDPE) showed no branches whereas linear low-density polyethylenes (LLDPE) exhibited a broad range of comonomer distributions. The distributions depended on the catalyst and comonomer type and whether the polymerisation was performed in the liquid or gas phase. The DSC curves contrast the very broad range of branching in Ziegler—Natta polymers, particularly those formed in the liquid phase, with those formed by single-site catalysts. The metallocene or single-site catalysed polymers showed, as expected, a narrower distribution of branching, but broader than sometimes described. The ultra low-density polyethylenes (ULDPE) can be regarded as partially melted at room temperature thus fractionation of ULDPE should continue to sub-ambient temperatures. The thermal fractionation is shown to be useful for determining the crystallisation behaviour of polyethylene blends.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

9.
Summary: Lamella thickness distribution (LTD) plays a critical role in determining the mechanical properties of polyethylene. LTD is predominantly governed by the intermolecular chemical composition distribution, but intrachain heterogeneity also results in a broadened LTD. Polyethylene synthesized by acyclic diene metathesis (ADMET) contains pristine microstructures free from inter and intrachain heterogeneity and therefore represent ideal models to investigate these phenomena. The crystalline structures of ADMET polyethylene with ethyl or n-hexyl branches every 21st backbone carbon (EB21and EO21, respectively) were characterized by transmission electron microscopy (TEM), small X-ray scattering and wide angle X-ray diffraction (SAXS and WAXD), and differential scanning calorimetry (DSC). The samples were crystallized for various periods at temperatures near the DSC crystallization peak temperatures: 10 °C for EB21 and 0 °C for EO21. TEM observation exhibited that EB21 displays straight lamellar crystals with axialitic organization and an average thickness of about 55 Å. This corresponds to twice the ethylene sequence length between branches, suggesting that one lamellar stem spans three branches and includes one ethyl branch within the lamella. The lamella thickness distribution was very narrow compared with that of the cross-fraction of ethylene/1-butene copolymer prepared via Ziegler-Natta polymerization. Similarly it was found from the same characterization methods that EO21 also displays a narrow lamella thickness distribution albeit with thinner lamellae, averaging 25–26Å thick. Judging from this lamella thickness, EO21 is considered to have a lamella stem composed of a single ethylene sequence between two braches, suggesting that the n-hexyl branch is entirely excluded from a crystalline phase.  相似文献   

10.
TIME-TEMPERATURE-MISCIBILITY AND MORPHOLOGY OF POLYOLEFIN BLENDS   总被引:1,自引:0,他引:1  
Miscibility and crystallization have been studied for polypropylene-polyethylene and polyethylene-polyethyleneblends. In the case of the polypropylene blends the composition of interest is 20% polypropylene. At this composition thepolypropylene has been found to be soluble in linear low density polyethylene but insoluble in high, low and very lowdensity polyethylenes. The miscibility has been concluded from the crystallization kinetics and polarised optical microscopywith a hot stage. Polyethylene-polyethylene blends have been formed from polymers with similar average branching contentbut where they have different melting temperatures. Important consequences are to introduce long branches into apolyethylene that only has short branches, and to modify the morphology of a polyethylenes so that haze, gloss and strainhardening are improved. Polyethylene blends must be developed after careful consideration of the branch content anddistribution within each of the constituents. It is not sufficient to simply blend polyethylenes, with the desired range ofproperties, without regard to the miscibility of the blend composition.  相似文献   

11.
Reactor powders of high- and ultrahigh-molecular weight polyethylene have been investigated. Two different Ziegler-Natta synthesis processes were used: polymerization in a slurry and in the gas phase. Synthesis temperature range was 30–85°C. Monoclinic crystals were identified in samples synthesized at 30°C. Investigations of thermal parameters were carried out by differential scanning calorimetry. A range of heating rates (0.4–10.0°C/min) was used to obtain information on sample reorganization on heating. The corresponding melt-crystallized samples were scanned and their thermal parameters were compared with those obtained from the original nascent powders. Percent crystallinity and average lamellar thickness, computed by the Thompson-Gibbs equation, were found to be controlled by conditions of synthesis. For reactor powders, the fraction of crystallinity is found to be insensitive to synthesis temperature. Crystallinity is controlled mainly by the synthesis process type: slurry or gas phase. Lamellar thickness was found to decrease as synthesis temperature was increased. This trend is the opposite of what is obtained on melt crystallization and can be interpreted on the basis of Lauritzen and Hoffman's theory of crystal growth. Nascent reactor powders give experimental support for the dependence of lamellar thickness on crystallization temperature that follows the pattern described in the theory at high undercooling. The influence of molecular weight on crystallinity and lamellar thickness of both nascent powders and melt-crystallized samples was also studied. Catalyst and synthesis conditions were found to control crystallinity and crystallite dimensions of the reactor powders. Thus, polyethylenes suitable for a specific purpose can be obtained directly on synthesis.  相似文献   

12.
The multimodal differential scanning calorimetry melting endotherms observed for commercial linear low‐density polyethylenes are due to broad and multimodal short‐chain‐branching distributions. Multiple peaks, observed in melting endotherms of isothermally melt‐crystallized and compositionally homogeneous polyethylene copolymers are due to intrachain heterogeneity. This intrachain heterogeneity is quantified by the distribution of ethylene sequence lengths within the chains. These compositionally homogeneous copolymers undergo a primary crystallization, which produces a population of thicker lamellae, creating a network that places severe restrictions on segment transport in subsequent secondary crystallization, which produces a population of thinner crystals. The restrictions on segment transport imposed by the initial network created by the primary crystallization of thicker lamellae severely limits the total crystallinity achieved in the random copolymers studied. The solution crystallization of such copolymers produces a continuous distribution due to more facile segment transport in a dilute solution, in contradistinction to the multimodal distribution produced in the melt crystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2800–2818, 2001  相似文献   

13.
The application of the Successive Self-nucleation and Annealing (SSA) thermal fractionation technique can yield detailed information of the structural changes induced in linear polyethylene by irradiation. The production of tertiary carbons during the crosslinking reactions can be equivalent to the structural heterogeneity present in branched polyethylenes since in both cases interruption of the linear crystallizable sequences occurs, and these are structural differences that can be easily detected by thermal fractionation. We demonstrate how correlations between melting point and short chain branching content employed for branched polymers can be useful to characterize the distribution of chain heterogeneity produced by crosslinking. As the radiation dose is increased and the crosslinking content also increases, the distribution of chain heterogeneity gets broader as detected by SSA. When the results are coupled with morphological observations made by transmission electron microscopy, valuable information on the morphological changes produced by crosslinking can also be ascertained, since the distribution of lamellar thicknesses substantially broadens with crosslinking. Such a broad distribution can also be predicted from SSA by simple calculations performed employing a modified version of the Gibbs–Thomson equation and is expected on the basis of random crosslinking reactions.  相似文献   

14.
A model for the crystallization kinetics of polymers is outlined and is used to interpret observations of the crystallization of polyethylene at high pressures. This model introduces a distinction between σe the lamellar surface energy which controls the lamellar thickness, and σe′, the surface nucleus surface energy which controls the growth rate. Differential scanning calorimetry and electron microscopy data for several polyethylenes crystallized at pressures of up to 8 kb are presented. From the dependence of lamellar thickness on the crystallization undercooling at 5 kb, it is found that σe increases markedly with pressure leading to the formation of very thick crystals at high pressures. The magnitude of the increase in σe is in agreement with σe values calculated from the dependence of melting temperatures on pressure. The nucleus surface energy σe′ is not expected to vary significantly with pressure, and estimates of growth rates of 5 kb which indicate that the growth rate does not vary significantly with pressure at constant under-cooling confirm this. Fractionation effects and the differences in behavior between different polyethylenes are also discussed.  相似文献   

15.
Summary: The crystalline structure and phase morphology of linear, branched polyethylenes and their blends during crystallization and subsequent melting were investigated, using a combination of differential scanning calorimetry (DSC), and synchrotron small angle X-ray scattering (SAXS). A linear polyethylene (PE1) with weight-average molecular weight (Mw) of 114 000 g/mol, and two branched polyethylene copolymers, containing 4.8 mol% (PE4) and 15.3 mol% (PE10) hexane, with molecular weights of 93 000 g/mol and 46 000 g/mol were used as pure samples. Two blends, PE1-4 and PE1-10, each with a weight ratio of 50/50, were prepared by solution blending. Our results indicate that in PE4 a phase separation within the branched component itself occurred, forming a broad distribution of lamellar thicknesses during the crystallization process. PE10 on the other hand did hardly crystallize because of the high degree of branching. Co-crystallization of both components took place in blend PE1-4 and liquid-liquid phase separation occurred in the melt of PE1-10. Morphological parameters were determined by using Bragg's law and the correlation function, respectively. The detected semicrystalline morphology can be well described by the lamellar insertion mode where thin lamellae develop between thicker primary lamellae. During subsequent heating, lamellae melted in the reversed sequence of their formation. The evolution of the structural parameters as a function of temperature revealed that surface melting began at first, and then the complete melting of stacks occurred until the final melting temperature was reached.  相似文献   

16.
Temperature dependency of crystalline lamellar thickness during crystallization and subsequent melting in isotactic polypropylene crystallized from both quiescent molten state and stress‐induced localized melt was investigated using small angle X‐ray scattering technique. Both cases yield well‐defined crystallization lines where inverse lamellar thickness is linearly dependent on crystallization temperature with the stretching‐induced crystallization line shifted slightly to smaller thickness direction than the isothermal crystallization one indicating both crystallization processes being mediated a mesomorphic phase. However, crystallites obtained via different routes (quiescent melt or stress‐induced localized melt) show different melting behaviors. The one from isothermal crystallization melted directly without significant changing in lamellar thickness yielding well‐defined melting line whereas stress‐induced crystallites followed a recrystallization line. Such results can be associated with the different extent of stabilization of crystallites obtained through different crystallization routes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 957–963  相似文献   

17.
In the present work, successive self-nucleation and annealing (SSA) was applied to a series of tetrafluoroethylene-hexafluoropropylene random copolymers (FEPs). Multiple melting peaks were observed for all FEP samples after SSA thermal treatment. The lamellar crystal thicknesses were calculated from the melting temperatures, and the mass percentages of the crystals of specific thickness were obtained from the areas of the melting peaks. As a result, distributions of the lamellar thickness, which can be correlated to the composition distribution, were determined. It was found that the composition distribution of the FEP samples tended to become more heterogeneous as the content of hexafluoropropylene (HFP) comonomer increases. Samples with the same HFP content might also have different composition distributions.  相似文献   

18.
The isothermal crystallization and subsequent melting process in semicrystalline poly(4‐methyl‐1‐pentene) were investigated via temperature‐dependent small‐ and wide‐angle X‐ray scattering and Flash DSC techniques. In a phase diagram of inversed crystalline lamellar thickness and temperature, the crystallization and melting lines can be described by two linear dependencies of different slopes and different limiting temperatures at infinite lamellar thickness. Upon subsequent heating, recrystallization lines with different slopes were observed for samples with different lamellar thickness, indicating changes in surface free energy difference between stabilized crystallites and mesomorphic phase. The surface free energy of native crystallites with extended‐chain conformation decreased with increasing lamellar thickness due to a more ordered surface region and less chain ends which changes cooperatively with mesomorphic phase. The surface free energy of stabilized crystallites remained unchanged for all lamellar thickness. Therefore, the recrystallization lines with different slopes are consequences of changes in surface free energy of mesomorphic phase. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 219–224  相似文献   

19.
Specimens of poly(vinylidene fluoride), crystal form II, annealed at different temperatures between 130 and 180°C were characterized by specific volume measurements, differential scanning calorimetry (DSC), and electron micróscopy. The degree of crystallinity calculated from the specific volume changed only by 15% i.e., from 50% to 65%. On the other hand, the melting behavior changed with annealing conditions. When a specimen was annealed above 170°C, two endothermic peaks appeared on either side of the annealing temperature. Results from DSC measurements made at different heating rates and electron microscopy showed that the two endotherms were caused by a bimodal distribution of lamellar thicknesses. The equilibrium melting point was found to be 210°C from the linear relation of the melting point and the annealing temperature. The equilibrium enthalpy and entropy of fusion were found to be 1.6 keal/mole and 3.3 eu/mole of repeat units by measurement on polymer–diluent mixtures. The surface free energy was found to be 5.1 kcal/mole of lamellar sequences from the plot of melting point versus reciprocal lamellar thickness obtained by electron microscopy. From a plot of enthalpy of fusion versus reciprocal lamellar thickness the surface enthalpy was found to be 20 keal/mole of lamellar sequences. These data lead to the estimate that a chain fold consists of about 30 repeat units.  相似文献   

20.
The crystallization behavior of two ethylene/octene copolymers, which differ in hexyl branch concentration, and their fractions were assessed. Fractionation of the crystalline linear low density polyethylenes (LLDPEs) was achieved by temperature rising elution fractionation. As the column temperature was raised, the eluted fractions exhibited a reduction in branch concentration and an increase in molecular weight. This was attributed to the difference in reactivity between ethylene and octene and the subsequent depletion of the ethylene monomer in the solution process. Spherulites formed during the crystallization of the whole polymers were well developed, banded, and displayed a wide distribution of sizes. However, spherulites of the LLDPE fractions were less well developed, more uniform in size, and tended to progressively deteriorate and become smaller as the concentration of branches increased. The ethylene and octene blocks of the copolymer crystallized independently, and it was proposed that the octene portion formed short, curved lamellae in the interfacial region of the lamellae formed from the linear ethylene portion of the molecule. Decreases in d spacing for fractions with increased short chain branching corresponded with similar drops in molecular weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号