首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The tendency of moving cracks to spread along the preferred directions of material anisotropy is treated. Depending on the velocity of crack propagation, the change of material properties in orthogonal planes is shown to affect the bifurcation characteristics. The problem is reduced to a system of dual integral equations that can be solved in a standard fashion. Of particular interest is the dynamic stress field near the tip of a moving crack in an orthotropic material. Although the 1√r stress singularity is preserved with r being the radial distance measured from the crack tip, the angular variations of the stresses are dependent on crack speed and material anisotropy. The possibility of crack bifurcation is examined by application of the strain energy density criterion for several composite systems. Crack branching is found to be enhanced by material anisotropy, a phenomenon that is not uncommon in composite materials.  相似文献   

2.
The asymptotic behavior of stress and strain near the tip of a Mode II crack growing in power law hardening material is analyzed by assuming that the crack grows straight ahead even though tests show otherwise. The results show that the stress and strain possess the singularities of (ln r)2/(n−1) and (ln r)2n/(n−1) respectively. The distance from the crack tip is r, and n is the hardening exponent, i.e. σn. The amplitudes of the stress and strain near the crack tip are determined by the asymptotic analysis.  相似文献   

3.
Crack repair using an elastic filler   总被引:2,自引:0,他引:2  
The effect of repairing a crack in an elastic body using an elastic filler is examined in terms of the stress intensity levels generated at the crack tip. The effect of the filler is to change the stress field singularity from order 1/r1/2 to 1/r(1-λ) where r is the distance from the crack tip, and λ is the solution to a simple transcendental equation. The singularity power (1-λ) varies from (the unfilled crack limit) to 1 (the fully repaired crack), depending primarily on the scaled shear modulus ratio γr defined by G2/G1=γrε, where 2πε is the (small) crack angle, and the indices (1, 2) refer to base and filler material properties, respectively. The fully repaired limit is effectively reached for γr≈10, so that fillers with surprisingly small shear modulus ratios can be effectively used to repair cracks. This fits in with observations in the mining industry, where materials with G2/G1 of the order of 10-3 have been found to be effective for stabilizing the walls of tunnels. The results are also relevant for the repair of cracks in thin elastic sheets.  相似文献   

4.
The near tip field of mode II crack that grows in thin bodies with power hardening or perfectly plastic behavior is analyzed. It is shown that for power hardening behavior, the pseudo plane stress field possesses the logarithm singularity, i.e. σ (ln r)2/(n−1), (ln r)2n/(n − 1), where r is the distance from the crack tip, n the hardening exponent is σn. When n → ∞ the solution reduced to that for the perfectly plastic case.  相似文献   

5.
An exact asymptotic analysis is presented of the stress and deformation fields near the tip of a quasistatically advancing plane strain tensile crack in an elastic-ideally plastic solid. In contrast to previous approximate analyses, no assumptions which reduce the yield condition, a priori, to the form of constant in-plane principal shear stress near the crack tip are made, and the analysis is valid for general Poisson ratio ν. Specific results are given for ν = 0.3 and 0.5, the latter duplicating solutions in previous work by L.I. Slepyan, Y.-C. Gao and the present authors. The crack tip field is shown to divide into five angular sectors of four different types ; in the order in which these sweep across a point in the vicinity of the advancing crack, they are : two plastic sectors which can be described asymptotically (i.e., as r → 0, where r is distance from the crack tip) in slip-line terminology as ‘constant stress’ and ‘centered fan’ sectors, respectively ; a plastic sector of non-constant stress which cannot be described asymptotically in terms of slip lines; an elastic unloading sector; and a trailing plastic sector of the same type as that directly preceding the elastic sector. Further, these four different sector types constitute the full set of asymptotically possible solutions at the crack tip. As is known from prior work, the plastic strain accumulated by a material point passing through such a moving ‘centered fan’ sector is O(ln r) as r → 0 ; it is proved in the present work that the plastic strain accumulated by a material point passing through the ‘constant stress’ sector ahead of a growing crack must be less singular than In r as r → 0. As suggested also in earlier studies, the rate of increase of opening gap δ at a point currently at a distance r behind, but very near, the crack tip is given for crack advance under contained yielding by
δ? = αJ?σ0+β(σ0E)a? ln(Rr)
where a is crack length, σ0 is tensile yield strength, E is Young's modulus, J is the value of the J-integral taken in surrounding elastic material, and the parameters α and R are undetermined by the asymptotic analysis. The exact solution for ν = 0.3 gives β = 5.462, which agrees very closely with estimates obtained from finite element solutions. An approximate analysis based on use of slip line representations in all plastic sectors is outlined in the Appendix.  相似文献   

6.
This work studies the asymptotic stress and displacement fields near the tip of a stationary crack in an elastic–plastic nonhomogeneous material with the emphasis on the effect of material nonhomogeneities on the dominance of the crack tip field. While the HRR singular field still prevails near the crack tip if the material properties are continuous and piecewise continuously differentiable, a simple asymptotic analysis shows that the size of the HRR dominance zone decreases with increasing magnitude of material property gradients. The HRR field dominates at points that satisfy |α−1 ∂α/∂xδ|1/r, |α−12α/(∂xδxγ)|1/r2, |n−1n/∂xδ|1/[r|ln(r/A)|] and |n−12n/(∂xδxγ)|1/[r2|ln(r/A)|], in addition to other general requirements for asymptotic solutions, where α is a material property in the Ramberg–Osgood model, n is the strain hardening exponent, r is the distance from the crack tip, xδ are Cartesian coordinates, and A is a length parameter. For linear hardening materials, the crack tip field dominates at points that satisfy |Etan−1Etan/∂xδ|1/r, |Etan−12Etan/(∂xδxγ)|1/r2, |E−1E/∂xδ|1/r, and |E−12E/(∂xδxγ)|1/r2, where Etan is the tangent modulus and E is Young’s modulus.  相似文献   

7.
Hancock and Cowling measured the critical crack tip opening displacements, δf, at fracture initiation in HY-80 steel specimens of six different configurations. δf varied from 90 μm in a deeply double-edge-cracked tensile panel to 900 μm in a single-edge-cracked tensile panel.McMeeking and Parks, and Shih and German have shown by their finite element calculations that the characteristics of the plane strain crack tip fields in both large scale yielding and general yielding are strongly dependent on specimen geometry and load level.In this study, the plane strain crack tip fields in the specimens tested by Hancock and Cowling were calculated using the finite element method. The crack tip triaxial tensile stress field is strongly affected by specimen geometric constraint, and the state of the triaxial tensile stress in a crack tip region is monitored by the ratio between the local tensile stress and the effective stress, i.e., ( ), at a distance x=2δ from the crack tip. The values of ( ) vary from 3.1 for the double-edge-cracked tensile panel to 1.7 for the single-edge-cracked tensile panel. The δf measured by Hancock and Cowling correlates very well with the ratio ( ). δf is a measure of the fracture ductility of the material ahead of the crack tip, and the ductility decreases with an increase in the triaxial tensile stress, i.e., the ratio ( ).  相似文献   

8.
The stress-strain distribution near the tip of a Mode I growing crack in a power hardening plastic material is reconsidered. Two types of asymptotic equations are derived and solved numerically. It is shown that when the crack tip is approached, the stress is singular of the order rδ, while the strain is singular of the order r, where r is the distance measured from the crack tip. The parameter δ is a constant; it depends on the hardening exponent n being greater than one.  相似文献   

9.
Material failure by crack propagation essentially involves a concentration of large displacement-gradients near a crack's tip, even at scales where no irreversible deformation and energy dissipation occurs. This physical situation provides the motivation for a systematic gradient expansion of general nonlinear elastic constitutive laws that goes beyond the first order displacement-gradient expansion that is the basis for linear elastic fracture mechanics (LEFM). A weakly nonlinear fracture mechanics theory was recently developed by considering displacement-gradients up to second order. The theory predicts that, at scales within a dynamic lengthscale ℓ from a crack's tip, significant logr displacements and 1/r displacement-gradient contributions arise. Whereas in LEFM the 1/r singularity generates an unbalanced force and must be discarded, we show that this singularity not only exists but is also necessary in the weakly nonlinear theory. The theory generates no spurious forces and is consistent with the notion of the autonomy of the near-tip nonlinear region. The J-integral in the weakly nonlinear theory is also shown to be path-independent, taking the same value as the linear elastic J-integral. Thus, the weakly nonlinear theory retains the key tenets of fracture mechanics, while providing excellent quantitative agreement with measurements near the tip of single propagating cracks. As ℓ is consistent with lengthscales that appear in crack tip instabilities, we suggest that this theory may serve as a promising starting point for resolving open questions in fracture dynamics.  相似文献   

10.
The electroelastic analysis of two bonded dissimilar piezoelectric ceramics with a crack perpendicular to and terminating at the interface is made. By using Fourier integral transform, the associated boundary value problem is reduced to a singular integral equation with generalized Cauchy kernel, the solution of which is given in closed form. Results are presented for a permeable crack under anti-plane shear loading and in-plane electric loading. Obtained results indicate that the electroelastic field near the crack tip in the homogeneous piezoelectric ceramic is dominated by a traditional inverse square-root singularity, while the electroelastic field near the crack tip at the interface exhibits the singularity of power law rα, r being distance from the interface crack tip and α depending on the material constants of a bi-piezoceramic. In particular, electric field has no singularity at the crack tip in a homogeneous solid, whereas it is singular around the interface crack tip. Numerical results are given graphically to show the effects of the material properties on the singularity order and field intensity factors.  相似文献   

11.
An approximate solution of the problem of determining the fields of stresses and strain rates due to creep near the tip of a transverse shear crack in a material whose behavior is described by a fractional-linear law of the theory of steady-state creep is given. It is shown that the strain rates have a singularity of the type ∼ r−α near the crack tip; the order of singularity α changes discretely, depending on the polar angle, and takes the values 1, 2/3, and 1/2. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 1, pp. 165–176, January–February, 2009.  相似文献   

12.
A higher order asymptotic solution of near-tip field is studied for plane-atrain Mode-I quasi-static steady crack growth in the incompressible (v=1/2) elastic perfectly-plastic media. The results show that the near-tip stress and strain are fully continuous, and the strain possesses In (A/r) singularity at the crack tip. The expressions of the stress, strain and velocity in each region are also given. The project supported by National Natural Science Foundation of China  相似文献   

13.
The asymptotic fields near the tip of a crack steadily propagating in a ductile material under Mode III loading conditions are investigated by adopting an incremental version of the indeterminate theory of couple stress plasticity displaying linear and isotropic strain hardening. The adopted constitutive model is able to account for the microstructure of the material by incorporating two distinct material characteristic lengths. It can also capture the strong size effects arising at small scales, which results from the underlying microstructures. According to the asymptotic crack tip fields for a stationary crack provided by the indeterminate theory of couple stress elasticity, the effects of microstructure mainly consist in a switch in the sign of tractions and displacement and in a substantial increase in the singularity of tractions ahead of the crack-tip, with respect to the classical solution of LEFM and EPFM. The increase in the stress singularity also occurs for small values of the strain hardening coefficient and is essentially due to the skew-symmetric stress field, since the symmetric stress field turns out to be non-singular. Moreover, the obtained results show that the ratio η introduced by Koiter has a limited effect on the strength of the stress singularity. However, it displays a strong influence on the angular distribution of the asymptotic crack tip fields.  相似文献   

14.
The singularity dominated zones for straight as well as curved cracks propagating in finite size specimens were determined experimentally by using the optical method of dynamic photoelasticity using the near-field stress equations. Experimental data was carefully analyzed using improved numerical schemes to get the complete stress field around the propagating crack. This stress field was critically examined to evaluate the size of singularity dominated zones for cracks propagating in straight as well as curved paths. For this purpose, the exact solution was compared with the singular solution using stress components σx, σy, τxy and the maximum shear stress τmax as a criterion respectively. For straight cracks where the stress field is symmetric about the crack path, the singularity dominated zones can be determined by using any one of the stresses. However, for a curved crack, the zones were unsymmetric. This study shows that σy, the crack opening stress, yields the best result for characterizing the singularity dominated zone around a running crack tip.  相似文献   

15.
When an elastic composite wedge is not under a plane strain deformation, an out-of-the-plane extensional strain exists. The singularity analysis for the stresses at the apex of the composite wedge reduces to a system of non-homogeneous linear equations. When the composite wedge consists of two anisotropic elastic materials, it is shown that the stresses have the (ln r) term for all combinations of wedge angles with few exceptions. The same is true when the materials are isotropic except that the (ln r) term may appear in the form of r(ln r) in the displacements only. For these isotropic composite wedges therefore the stresses are bounded, though not continuous, at the apex. However, there are isotropic composite wedges for which the stress singularity is logarithmic. Conditions are given for isotropic composite wedges for which the stresses are (a) uniform, (b) non-uniform but bounded and (c) logarithmic. Unlike the r−λ singularity, the existence of the (ln r) term does not depend on the complete boundary conditions.  相似文献   

16.
The plane problem of the theory of elasticity is considered. It is assumed that in the neighborhood of the tip of an arbitrarily moving crack the stresses have a singularity of order r–1/2. On this assumption a general expression is obtained for the distribution of the stresstensor components in the given neighborhood. This distribution is determined by the two parameters N and P. In the case of stresses symmetrical about the line of the crack (P=0) the angular distribution does not depend on the intensity coefficient N and is determined only by the velocity of the crack at the given instant and the transverse and longitudinal wave velocities. On the same assumptions it is shown that the energy condition obtained by Craggs for the particular case of steady-state motion is a necessary condition for the arbitrarily moving crack. Irwin [1] and Cherepanov [2] have studied these questions in the quasi-static approximation.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 10, No. 3, pp. 175–178, May–June, 1969.  相似文献   

17.
Exact series solutions for planar creeping flows of Oldroyd-B fluids in the neighbourhood of sharp corners are presented and discussed. Both reentrant and non-reentrant sectors are considered. For reentrant sectors it is shown that more than one type of series solution can exist formally, one type exhibiting Newtonian-like asymptotic behaviour at the corner, away from walls, and another type exhibiting the same kind of asymptotics as an Upper Convected Maxwell (UCM) fluid. The solutions which are Newtonian-like away from walls are shown to develop non-integrable stress singularities at the walls when the no-slip velocity boundary condition is imposed. These mathematical solutions are therefore inadmissible from the physical viewpoint under no-slip conditions. An inadmissible solution, with stress singularities which are not everywhere integrable, is identified among the solutions of UCM-type. For a 270° reentrant sector the radial behaviour of the normal stress is everywhere r−0.613. In the viscometric region near a wall, the radial normal stress σrr behaves like (rε)−0.613, where ε is the angle made with the wall. In addition σrθ is infinite (not integrable) at the wall even when r is non-zero. Another UCM-type solution has a normal stress behaviour away from walls which is r−0.985 for 270° sector. Again, this solution has a non-integrable stress singularity and is therefore inadmissible. Finally, for non-reentrant sectors it is shown that the flow is always Newtonian-like away from walls.  相似文献   

18.
The fracturing of glass and tearing of rubber both involve the separation of material but their crack growth behavior can be quite different, particularly with reference to the distance of separation of the adjacent planes of material and the speed at which they separate. Relatively speaking, the former and the latter are recognized, respectively, to be fast and slow under normal conditions. Moreover, the crack tip radius of curvature in glass can be very sharp while that in the rubber can be very blunt. These changes in the geometric features of the crack or defect, however, have not been incorporated into the modeling of running cracks because the mathematical treatment makes use of the Galilean transformation where the crack opening distance or the change in the radius of curvature of the crack does not enter into the solution. Change in crack speed is accounted for only via the modulus of elasticity and mass density. For this simple reason, many of the dynamic features of the running crack have remained unexplained although speculations are not lacking. To begin with, the process of energy dissipation due to separation is affected by the microstructure of the material that distinguishes polycrystalline from amorphous form. Energy extracted from macroscopic reaches of a solid will travel to the atomic or smaller regions at different speeds at a given instance. It is not clear how many of the succeeding size scales should be included within a given time interval for an accurate prediction of the macroscopic dynamic crack characteristics. The minimum requirement would therefore necessitate the simultaneous treatment of two scales at the same time. This means that the analysis should capture the change in the macroscopic and microscopic features of a defect as it propagates. The discussion for a dual scale model has been invoked only very recently for a stationary crack. The objective of this work is to extend this effort to a crack running at constant speed beyond that of Rayleigh wave. Developed is a dual scale moving crack model containing microscopic damage ahead of a macroscopic crack with a gradual transition. This transitory region is referred to as the mesoscopic zone where the tractions prevail on the damaged portion of the material ahead of the original crack known as the restraining stresses, the magnitude of which depends on the geometry, material and loading. This damaged or restraining zone is not assumed arbitrarily nor assumed to be intrinsically a constant in the cohesive stress approach; it is determined for each step of crack advancement. For the range of micronotch bluntness with 0 < β < 30° and 0.2 σ/σ0 0.5, there prevails a nearly constant restraining zone size as the crack approaches the shear wave speed. Note that β is the half micronotch angle and the applied stress ratio is σ/σ0 with σ0 being the maximum of the restraining stress. For σ/σ0 equal to or less than 0.5, the macrocrack opening displacement COD is nearly constant and starts to decrease more quickly as the crack approaches the shear wave speed. For the present dual scale model where the normalized crack speed v/cs increases with decreasing with the one-half microcrack tip angle β. There prevails a limit of crack tip bluntness that corresponds to β 36° and v/cs 0.15. That is a crack cannot be maintained at a constant speed if the bluntness is increased beyond this limiting value. Such a feature is manifestation of the dependency of the restraining stress on crack velocity and the applied stress or the energy pumped into the system to maintain the crack at a constant velocity. More specifically, the transitory character from macro to micro is being determined as part of the unknown solution. Using the energy density function dW/dV as the indicator, plots are made in terms of the macrodistance ahead of the original crack while the microdefect bluntness can vary depending on the tip geometry. Such a generality has not been considered previously. The macro-dW/dV behavior with distance remains as the inverse r relation yielding a perfect hyperbola for the homogeneous material. This behavior is the same as the stationary crack. The micro-dW/dV relations are expressed in terms of a single undetermined parameter. Its evaluation is beyond the scope of this investigation although the qualitative behavior is expected to be similar to that for the stationary crack. To reiterate, what has been achieved as an objective is a model that accounts for the thickness of a running crack since the surface of separation representing damage at the macroscopic and microscopic scale is different. The transitory behavior from micro to macro is described by the state of affairs in the mesoscopic zone.  相似文献   

19.
20.
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventionalJ 2 deformation theory. No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory. Two typical crack problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-IK-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory. The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, theJ-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases. The project supported by the National Natural Science Foundation of China (19704100 and 10202023) and the Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号