首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The diol R2C(SiMe2OH)2 (R = Me3Si) has been shown to react with: SO2Cl2 to give R2 Me2; SOCl2 to give R2C(SiMe2Cl)2; Me3SiI or Me3SiCl to give R2C(SiMe2OSiMe3)2; R′COCl; (R′ = Me or CF3) to give R2C(SiMe2O2CR′)-(SiMe2Cl); (R′CO)2O (R′ = Me or CF3 to give R2C(SiMe2O2CR′)2; with MeOH containing acid to give R2C(SiMe2OMe)2; with neutral MeOH to give R2C-(SiMe2OMe)2 and probably R2 Me2; MeLi to give R2C(SiMe2OLi)2 (and the latter to react with PhMeSiF2 to give R2 Me2). The diacetate R2C(SiMe2O2CMe)2 reacts with CsF in MeCN to give R2C(SiMe2F)2; it does not react with NaN3 or KSCN in MeCN, but the bis(trifluoroacetate) reacts with these salts with KOCN to give R2C(SiMe2X)2 (X = N3, NCS, NCO).  相似文献   

2.
Reactions of mixtures of Cl2MeSiSiMeCl2 (1) and Me2MCl2 (M=Si, Ge, Sn) with either H2S/NEt3 or Li2E (E=Se, Te) yielded the bicyclo[3.3.0]octanes Me2M(E)2Si2Me2(E)2MMe2. A carbon containing analog, (CH2)5C(S)2Si2Me2(S)2C(CH2)5, was prepared from 1 and (CH2)5C(SH)2. Crystal structures of three of these compounds were determined and the observed conformations of the bicyclo[3.3.0]octane skeletons compared with results of density functional theory calculations. Another class of silchalcogenides featuring a bicyclo[3.3.0]octane skeleton, E(Me2Si)2Si2Me2(SiMe2)2E, was formed from the doubly branched hexasilane (ClMe2Si)2Si2Me2(SiMe2Cl)2 and H2S/NEt3 or Li2E. All products were characterized by multinuclear NMR (1H, 13C, 29Si, 77Se, 119Sn, and 125Te).  相似文献   

3.
Heating of the lithium magnesate [Li(THF)2(μ-Br)2Mg(Tsi)(THF)] (Tsi = (Me3Si)3C) under vacuum gives the dialkylmagnesium compound Mg(Tsi)2, the first two-coordinate magnesium derivative to have been structurally characterized in the solid state. The compound is remarkably thermally stable, not decomposing (or melting) when heated to 350°C. It has a very low reactivity, failing to react in toluene with, for example, CO2, Me3SiCl, Me2SiHCl, MeI, BCl3 or CH3COCl, and even with neat CH3COCl at its boiling point. It does react, though fairly slowly, with I2 in toluene to give TsiI, and more rapidly with Br2 to give TsiBr, and with an excess of PhSO2Cl in toluene at 1OO°C to give TsiCl. It decomposes quickly in the air, and reacts readily with MeOH in toluene to give TsiH without formation of detectable amounts of the intermediate TsiMgOMe, and with O2 in toluene.  相似文献   

4.
Addition of the diarylstannylene R″2Sn (R″ = 2−tBu−4,5,6-Me3C6H) to the cryptodiborylcarbene (Me3Si)2C(BtBu)2C furnishes the stannaethene (Me3Si)2C(BtBu)2C=SnR″2 (10). The X-ray structure analysis of 10 reveals a strictly planar environment of the tricoordinated tin and carbon atoms and a slight twisting of the Sn=C double bond.  相似文献   

5.
The silanol TsiSiMe2OH (Tsi = (Me3Si)3C) has been made by hydrolysis of the iodide TsiSiMe2I in H2O/dioxane or H2O/Me2SO. It has been shown to react with some acid chlorides RCOCl (R=Me, Et, CICH2 Ph, 4-O2NC6H4, and 3,5- (O2N)2C6H3) and anhydrides (RCO)2O (R = Me, CF3, or Ph) to give the carboxylates TsiSiMe2OCOR, and with SO2Cl2 to give TsiSiMe2OSO2Cl. The triol TsiSi(OH)3 has been made by treatment of TsiSiH(OH)I with H2O/Me2SO at 150°C or with a mixture of aqueous AgClO4 and an organic solvent. The triol has been shown to react with RCOCl (R = Me, Et, or Ph) or (RCO)2O (R = Ph) to give the corresponding TsiSi(OCOR)3, with (CF3CO)2O to give TsiSi(OH)2(OCOCF3), and with a mixture of Me3SiCl and AgClO4 in benzene or one of Me3Sil and (Me3Si)NH to give TsiSi(OSiMe3)3. The triol is unusually stable, but decomposes at its m.p. of 285–290°C.  相似文献   

6.
Protonation of the lithium triphospha-cyclopentenyl salt Li (P3C2But2RR′) (R=(Me3Si)2CH-, R′=Bun) with HCl affords the new 2,3-dihydro-1H-[1,2,4] triphosphole P3C2But2(H) (Bun)CH(SiMe3)2 which has been structurally characterised as its [W(CO)5] complex.  相似文献   

7.
碳锗双桥连二环戊二烯(Me2C)(Me2Ge)(C5H4)2(1)与五羰基铁在回流甲苯及二甲苯中的反应,得到正常的Fe-Fe键化合物(Me2C)(Me2Ge)[(η5-C5H3)Fe(CO)]2(μ-CO)2(3)和脱锗桥产物(Me2C)[(η5-C5H4)Fe(CO)]2(μ-CO)2(4)以及一个结构新颖的化合物(Me2C)[(η5-C5H3)[(Me2Ge)Fe(CO)2](η15-C5H3)[Fe(CO)2](2).用X射线衍射分析測定了化合物3的晶体结构,并提出了可能的生成机理.  相似文献   

8.
Transamination reactions utilizing the compound mercuric bis(trimethylsilyl)amide, Hg{N(SiMe3)2}2, in tetrahydrofuran (THF), and the metals Na, Mg, Ca, Sr, Ba and Al have been investigated. Thus the THF solvated compounds Na[N(SiMe3)2]·THF and M[N(SiMe3)2]2·2THF, M = Mg, Ca, Sr and Ba (1–4), have been prepared. The X-ray crystal structures of 1 and the related manganese compound Mn[N(SiMe3)2]2·2THF (5) are reported. Interaction of the silylamides, 2–4, with a range of crown ethers apparently proceeded with elimination of silylamine, (Me3Si)2NH, and novel ring opening of the crown ethers, generating species containing a donor alkoxide ligand with a vinyl ether function, presumably, ---O(CH2CH2O)nCH=CH2 (n = 3−5). The silylamides 2–4 were also cleanly converted to the corresponding alkoxides (from 1H NMR data) in reactions with stoichiometric quantities of 3-ethyl-3-pentanol.  相似文献   

9.
The compound (o-MeC6H4Me2Si)3CH has been prepared and shown to be metallated slowly by MeLi in refluxing THF to give the lithium reagent (o-MeC6H4Me2Si)3CLi. This reacts with MeI to give (o-MeC6H4Me2Si)3CMe, but not with Me2SiHCl nor with a range of other organosilicon halides.  相似文献   

10.
Sodium bis(trimethylstannyl)amide NaN(SnMe3)2, isolated by the reaction of trimethylstannyldiethylamine with sodium amide, reacts with tris(trimethylsilyl)hydrazino—dichloro-phosphine to form bis(trimethylsilyl)bis(trimethylstannyl)-2-phospha-2-tetrazene, (Me3Si)2N-N=P-N(SnMe3)2. Both the molecules have been isolated and characterized.  相似文献   

11.
The new organosilicon bromides (Me3Si)2(ZMe2Si)CSiMe2Br with Z=PhO or MeS have been prepared and new spectroscopic data obtained for the previously reported compounds with Z=H, F, Br, Me, Ph, MeO or PhS. Competitions between pairs of bromides for a deficiency of AgBF4 in Et2O, with the determination of the ratio of the fluoride products by 19F-NMR spectroscopy, have led to the following approximate relative reactivities of the bromides and so to the relative abilities of the γ-Z groups to provide anchimeric assistance to the leaving of Br in this reaction: Me, 1; Ph, 40; PhO, 3400; PhS, 5000; MeS, 7000; MeO, 54 000. In methanolysis in CH2Cl2, (Me3Si)2(MeOMe2Si)CSiMe2Cl has been found to be roughly 120 times as reactive as (Me3Si)2(PhOMe2Si)CSiMe2Cl. Combination of the results with previously available information suggests the following approximate order of ability of γ-groups Z to provide anchimeric assistance in reactions at the Si---X bonds in compounds (Me3Si)2(ZMe2Si)CSiMe2X: OCOMe>OMe>OCOCF3>MeS>PhS, PhO>N3, Cl>NCS>Ph>CH=CH2>Me.  相似文献   

12.
UV/vis in diffusion reflection mode (DRS) and DRIFT spectroscopy have been used to study the surface zirconocene species formed at the interaction of Me2Si(Ind)2ZrCl2 and Me2Si(Ind)2ZrMe2 complexes with the MAO/SiO2 support. Effect of additional activation of these catalysts with TIBA has been studied as well.

Structure of type [Me2Si(Ind)2ZrMe]+[MeMAO] (C) is formed at the reaction of Me2Si(Ind)2ZrMe2 complex with MAO/SiO2 (a.b. at 456 nm in UV/vis spectra). Interaction of this complex with TIBA results in the formation of new structure (D) with a.b. at 496 nm in UV/vis spectra.

The surface species of different composition and structures are formed at interaction of Me2Si(Ind)2ZrCl2 complex with MAO/SiO2. The ratio between these species depends on the zirconium content in the Me2Si(Ind)2ZrCl2/MAO/SiO2 catalysts. According to the DRIFTS data (CO and ethylene adsorption) and ethylene polymerization data these catalysts contain active ZrMe bonds but activity of these catalysts at ethylene polymerization is low. Interaction of Me2Si(Ind)2ZrCl2/MAO/SiO2 with TIBA leads to the formation of the new cationic structure of type (D) with a.b. at 496 nm in UV/vis spectra and great increasing of activity at ethylene polymerization.  相似文献   


13.
Characteristics of methyl methacrylate (MMA) polymerization using oscillating zirconocene catalysts, (2-Ph-Ind)2ZrX2 (X = Cl, 1; X = Me, 2), mixtures of rac- and meso-zirconocene diastereomers, (SBI)ZrMe2 [3, SBI = Me2Si(Ind)2] and (EBI)ZrMe2 [4, EBI = C2H4(Ind)2], as well as diastereospecific metallocene pairs, rac-4/Cp2ZrMe2 (5) and rac-4/CGCTiMe2 [6, CGC = Me2Si(Me4C5)(t-BuN)], are reported. MMA polymerization using the chloride catalyst precursor 1 activated with a large excess of the modified methyl aluminoxane is sluggish, uncontrolled, and produces atactic PMMA. On the other hand, the polymerization by a 2/1 ratio of 2/B(C6F5)3 or 2/Ph3CB(C6F5)4 is controlled and produces syndiotactic PMMA. Mixtures of diastereomeric ansa-zirconocenes 3 or 4 containing various rac/meso ratios, when activated with B(C6F5)3, yield bimodal PMMA; this behavior is attributed to the meso-diastereomer that, in its pure form, affords bimodal, syndio-rich atactic PMMA. For MMA polymerization using diastereospecific metallocene pairs, rac-4/5 and rac-4/6, the isospecific catalyst site dominates the polymerization events under the conditions employed in this study, and the aspecific and syndiospecific sites are largely nonproductive, thereby forming only highly isotactic PMMA.  相似文献   

14.
Treatment of the dimer complex [C5Me5 (CO)2 Ru]2 (1) with HBF4 in CH2Cl2 at room temperature yields the hydrido-bridged dinuclear complex [(C5Me5)2Ru2(CO)4H]BF4 (2), and after refluxing in propionic anhydride [C5Me5(CO)3Ru]BF4 (5) is obtained, UV-irradiation of 1 in the presence of H2CHal2 (Hal = Cl, I) or trimethylphosphine leads to the formation of C5Me5(CO)2Ru-Hal (3a, 3b) or C5Me5(CO)(Me3P)RuH (4) respectively. Exchange reactions of 3a, 3b with LiAlH4, NaOMe and Me3 P give the complexes C5Me5(CO)2RuX (6a,6b) (X=H, OMe), C5Me5(CO)(Me3P)Ru-Hal (7a,7b) (Hal = Cl, I) and C5Me5(Me3P)2RuI (8). The interaction of 3b or 5 with Me3P=CH2 leads to the formation of the ylide complex [C5Me5(CO)(Me3P)-RuCH2PMe3)Cl (9) or the rutheniumacyl-ylide C5Me5(CO)2RuC(O)CH=PMe3 (10). 4 reacts with Me3P=CH2 to give C5Me5(CO)(Me3P)RuMe (11) and Me3P via the intermediate formation of the phosphonium salt Me4P[Ru(CO) (Me3P)-C5Me5].  相似文献   

15.
Photochemical reaction of (CO)2(dppe)Fe(H)(SiR3) with HSiR3 (SiR3 = Si(OMe)3, Si(OEt)3, SiMe3, SiMe2Ph, SiPh3) yields the trihydrido silyl complexes (CO)(dppe)FeH3(SiR3 ). The analogous complexes (PR′Ph2)3 FeH3(ER3) are prepared by reaction of the H2 -complexes (PR′Ph2)3FeH2(H2) with HER3 (ER3 = SiMe3, SiMC2Ph, SiMePh2, SiPh3, Si(Me2)OSi(Me2)H, SnPh3, SnEt3). Additional derivates of (CO) (dppe)FeH3(SiR3) (SiR3 = SiMePh2) and (PR′Ph2)3FeH3(SiR3) (SiR3 = Si(OMe)3, SiH2Ph, SiHPh2, Si(OEt)3, SiMePhCl) are accessible by silane exchange starting from (CO)(dppe)FeH3(SiMe3) and (PR′Ph2) 3FeH3(SiMe3). (PBuPh2)3FeH3(SiMePh2) was also prepared from (PBuPh2)3FeH2(N2) and HSiMePh2, and (PBuPh2)3FeH3(SnMe3) from (PBuPh2)3FeH2(H2) and Me3SnCl. The complex (PBuPh2) 3FeH3(SnMe3) crystallizes as a toluene solvate in the cubic space group I 3d and shows crystallographically imposed C3-symmetry. The complexes (CO)2 (dppe)Fe(H)(SiR3) and (PR′Ph2)3FeH3(ER3) are highly dynamic in solution. Low temperature NMR measurements and the E, Fe, H coupling constants strongly indicate that the exchange mechanism involves η2-HER3 ligands.  相似文献   

16.
Alkylidene complexes (Me3SiCH2)3Ta(PMe3)=CHSiMe3 (1) and Me3SiCH2Ta(PMe3)2(=CHSiMe3)2 (3a) were found to react with phenylsilanes H2SiR′Ph (R′=Me, Ph) and (PhSiH2)2CH2 to give disilyl-substituted alkylidenes (Me3SiCH2)3Ta=C(SiMe3)(SiHR′Ph) (2) and novel metallasilacyclobutadiene and metalladisilacyclohexadiene complexes. Silyl-substituted alkylidene complex (ButCH2)2W(=O)[=C(But)(SiPh2But)] (5a) was prepared from the reaction of O2 with an equilibrium mixture (ButCH2)W(=CHBut)2(SiPh2But) (4b) (ButCH2)2W(CBut)(SiPh2But) (4a). Our recent studies of the preparation of these complexes and mechanistic pathways in the formation of these silyl-substituted alkylidene complexes are summarized.  相似文献   

17.
The compounds Cp2VR (R = CH3, C2H5, n-C3H7, n-C4H9, n-C5H11, CH2C(CH3)3 or CH2Si(CH3)3) have been prepared from Cp2 VCl and RMgX in n-pentane. The air-sensitive compounds are stable at room temperature, but decompose between 65 and 138°C. The thermal stability decreases in the order R = CH3 CH2Si(CH3)3 > C2H5 > CH2C(CH3)3 > n-C5H11 > n-C4H9 > n-C3H7. Compounds with R = i-C3H7 or t-C4H9 could not be obtained.  相似文献   

18.
The copper compound [(THF)KCu(OtBu)3] 1 was obtained by interaction of a 1:1 mixture of ZnCl2/CuCl2 with KOtBu. Bi- and trifunctional aminoalcohols were used to synthesize the intramolecularly donor stabilized Cu(II) alkoxides Cu(OCH(R)CH2NMe2)2 (3: R=Me, 4: =CH2NMe2) where 4 was structurally characterized. Lewis acid–base adduct formation with (Me3Si)3CZnCl gave the heterodinuclear compounds (Me3Si)3CZnCl · Cu(OCH(R)CH2NMe2)2 (5: R=Me, 6: R=CH2NMe2), which were characterized by X-ray single-crystal structure analysis. The two metal centers Cu and Zn of 5 and 6 are bridged by two oxygen atoms to form a Cu–O–Zn core. Pyrolysis of compounds 5 and 6 in dry argon or a H2/N2 mixture at atmospheric pressure forms metallic copper and zinc oxide, whereas pyrolysis under O2/Ar forms additionally oxidized copper species. Elemental analysis of the pyrolysis products showed carbon and nitrogen contamination. Scanning electron microscopy and energy dispersive X-ray analysis were performed to get information on the morphology and the chemical composition of the pyrolysis products.  相似文献   

19.
1,2-二(1-苯基环己基环戊二烯基)四甲基二硅烷与Fe(CO)5在二甲苯中加热回流生成二铁化合物(Me2SiSiMe2)[(1-Ph-c-C6H10C5H3)Fe(CO)]2(μ-CO)2(2).通过柱层析分离到化合物2的顺反异构体2c和2t,并分别进行热重排反应,发现顺式底物2c重排生成反式重排产物[Me2Si(c-C6H10PhC5H3)Fe(CO)2]2(3t),而反式底物2t重排则生成顺式重排产物3c.这表明重排反应是立体专一性的.通过X射线衍射分析测定了化合物2c和3t的晶体结构.  相似文献   

20.
The title complex (Me2SiSiMe2)(η5-l-indenyl)Fe(CO)]2(μ-CO)2 (1) was prepared by the reaction of 1,2-bis(1-indenyl)tetramethyl-disilane and Fe(CO)5 in refluxing heptane. Its thermal rearrangement product [Me2Si(η5-1-indenyl)Fe(CO)2]2 (2) was also obtained from the reaction. 1 in refluxing xylene can be readily converted into 2. The crystal structures of the cis isomer 1c and the trans isomer 2t were determined by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号